
Objects in C++

Objects, with dynamic lookup of

virtual functions

C++ Object System

▪Object-oriented features

1.Classes and Data Abstraction

2.Encapsulation

3.Inheritance

1.Single and multiple inheritance

2.Public and private base classes

4.Objects, with dynamic lookup of virtual
functions

5.Subtyping

1.Tied to inheritance mechanism

Polymorphism in C++

▪Runtime polymorphism

▪Virtual functions

▪Compile-time polymorfism

▪(parametric polymorfism)

▪Generic programming

▪templates

Run-time Polymorphism

▪Run-time polymorphism: implemented with dynamic
lookup of virtual functions

▪Dynamic lookup: a method is selected dynamically, at run
time, according to the implementation of the object that
receives a message

▪not some static property of the pointer or variable used to
name the object

▪The important property of dynamic lookup is that different
objects may implement the same operation differently

Virtual functions

▪Member functions are either

▪Virtual, if explicitly declared or inherited as virtual

▪Non-virtual otherwise

▪Non-virtual functions

▪Are called in the usual way. Just ordinary functions.

▪May be redefined in derived classes (overloading through
redefining)

▪Pay overhead only if you use virtual functions

Virtual members

▪Must be explicitly declared as “virtual”

▪May be overridden in derived (sub) classes

▪Dynamic binding is activated

▪Are accessed by indirection through ptr in object

▪Explicitly as pointers or using references
class A { public: virtual void vi(){...}};

class B : public A{ public: virtual void vi(){ …}};

int main() {

A* pa = new A; a -> vi(); // VIRTUAL CALL

A& ra = b; ra.vi(); // VIRTUAL CALL

A a = b; a.vi(); // NON VIRTUAL CALL

}

Sample class: one-dimen. points

class Pt {

public:

Pt(int xv);

Pt(Pt* pv);

int getX();

virtual void move(int dx);

protected:

void setX(int xv);

private:

int x;

};

Overloaded constructor

Public read access to private data

Virtual function

Protected write access

Private member data

Sample derived class

class ColorPt: public Pt {

public:

ColorPt(int xv,int cv);

ColorPt(Pt* pv,int cv);

ColorPt(ColorPt* cp);

int getColor();

virtual void move(int dx);

virtual void darken(int tint);

protected:

void setColor(int cv);

private:

int color;

};

Overloaded constructor

Non-virtual function

Virtual functions

Protected write access

Private member data

Sample derived class

/* ----Definitions of Member Functions --------*/

void ColorPt::darken(int tint) { color += tint; }

void ColorPt::move(int dx) {

Pt::move(dx); this->darken(1);

}

Virtual functions and indirection (1)

▪C++ allows a base class pointer to point to a
(public) derived class object

▪Upon method invocation, the method of the
derived object is called (dynamic binding)

▪This leads to generic alghoritms using base class
pointers

Pt* ptr = new ColorPt;

ptr->move();

Virtual functions and indirection (2)

BaseClass f()

D1 f()

D2 f() doesn’t exist

D3 f() doesn’t exist
obj

Run-time representation

3

5

blue

Point object

ColorPoint object

x

vptr

x

vptr

c

Point vtable

ColorPoint vtable

Code for move

Code for move

Code for darken

Virtual pointers Virtual tables Function code

“this” pointer

▪Code is compiled so that member function takes
“object itself” as first argument

Code int A::f(int x) { … g(i) …;}

compiled as int A::f(A *this, int x) { … this->g(i) …;}

▪“this” pointer may be used in member function

▪Can be used to return pointer to object itself,
pass pointer to object itself to another function, ...

Constructors/destructors
and inheritance (2)

Non-virtual functions

▪How is code for non-virtual function found?

▪Same way as ordinary “non-member” functions:

▪Compiler generates function code and assigns address

▪Address of code is placed in symbol table

▪At call site, address is taken from symbol table and placed
in compiled code

▪But some special scoping rules for classes

▪Overloading

▪Remember: overloading is resolved at compile time

▪This is different from run-time lookup of virtual function

Overload

⚫ An overloaded function is a function that

shares its name with one or more other

functions, but which has a different parameter

list. The compiler chooses which function is

desired based upon the arguments used.

Overridden

⚫ An overridden function is a method in a

descendant class that has a different definition

than a virtual function in an ancestor class. The

compiler chooses which function is desired

based upon the type of the object being used to

call the function.
⚫ Regardless the access modifier (private and so on)

of the function

⚫ Si può fare overriding anche di metodi private
− Not like Java

− Vediamo un esempio

⚫redefined

⚫ A redefined function is a method in a

descendant class that has a different definition

than a non-virtual function in an ancestor class.

Don't do this. Since the method is not virtual,

the compiler chooses which function to call

based upon the static type of the object

reference rather than the actual type of the

object.

Virtual vs redefined Functions

class parent { public:

void printclass() {printf("p ");};

virtual void printvirtual() {printf("p ");}; };

class child : public parent { public:

void printclass() {printf("c ");};

virtual void printvirtual() {printf("c ");}; };

main() {

parent p; child c; parent *q;

p.printclass(); p.printvirtual(); c.printclass(); c.printvirtual();

q = &p; q->printclass(); q->printvirtual();

q = &c; q->printclass(); q->printvirtual();

}

Output: p p c c p p p c

Esercizio

▪Definiamo una classe A con un metodo virtual che
ridefiniamo (overriding) in una sottoclasse B.

▪Proviamo a chiamare quel metodo in diversi casi

Function call binding

▪Early binding (C,C++)

▪At compile time

▪Late binding (C++)

▪At runtime

▪Mighty. But less efficient

▪1 more assembler statement per call

▪Slight memory consumption due to the VPTRs

