
Objects in C++

Encapsulation

C++ Object System

 Object-oriented features
1.Classes and Data Abstraction
2.Encapsulation
3. Inheritance

 Single and multiple inheritance
 Public and private base classes

4.Objects, with dynamic lookup of virtual functions
5.Subtyping

 Tied to inheritance mechanism

Encapsulation

 Encapsulation means that implementation
details are hidden inside a program unit with a
specific interface.

 A way to provide abstraction: the interface of
objects usually consist of a set of public
functions that manipulate hidden data.

 Incapsulation involves restricting access to a
program component according to its specified
interface.

Struct and Class in C++ (1)

 A struct is a way to collect a group of variables,
 like in C.

struct Structure1 {

char c;

int i;

};

int main() {

struct Structure1 s1, s2;

// the keyword struct is optional in C++

…

}

Struct and Class in C++ (2)

 In C++ struct and class have been made similar
 In C++, a struct can contain
member functions
 private fields

 By default, all members of a struct are public
 By default, all members of a class are private
 Similar considerations also apply to union

Visibility

 Public, private, protected levels of visibility
 Public: visible everywhere
 Protected: within class and subclass declarations
 Private: visible only in class where declared, inherited

private members exist in the derived class, but cannot be
named directly in code written as part of the derived class.

 Friend functions and classes
 Friend allows special access
 Careful attention to visibility and data abstraction
 Are executed faster

Private, protected, public levels of visibility

 Member data is made private, so that changes do not
affect the way that other classes (including derived classes)
depend on this class.

 Members that modify private data are made
protected, so that derived classes may change the value of
member data, but external code is not allowed to do so.

 Finally, member functions that read the value of member
data and provide useful operations on objects are
declared public.

Friend functions (1)

 A class may declare friend functions

 The friend designation is used to allow visibility
to the private and protected part of a class

 A friend function can be
 a public member function of another class
 an external function

Friend functions (2)

class A {

private:

int i;

public:

friend int B::f(int n, A* a);
…

};

class B {

private:

int i;

public:

int f(int n, A* a);

…

};

int B::f(int n, A* a) {
return i + a->i + n;

}

 If a class B has the declaration friend class A, then code
written as part of A has access to the private/private part of B.

 The friend mechanism is used when a pair of classes is
closely related, such as matrices and vectors.

class B {

public: void foo();

};

B::foo() {

A a_obj;

a_obj.a = 10;

}

Friend classes

class A {
int a;
friend class B;

};

