
Introduction to C++

Informatica III – parte A

A. Gargantini



History

• C++ is an object-oriented extension of C

• C was designed by Dennis Ritchie at Bell Labs
• used to write Unix

• based on BCPL

• C++ designed by Bjarne Stroustrup at Bell Labs
• His original interest at Bell was research on simulation

• Early extensions to C are based primarily on Simula

• Called “C with classes” in early 1980’s

• Popularity increased in late 1980’s and early 1990’s

• Features were added incrementally

• Classes, templates, exceptions, multiple 
inheritance, type tests...



Design Goals

• Provide object-oriented features in C-based 
language, without compromising efficiency
• Backwards compatibility with C

• Better static type checking

• Data abstraction

• Objects and classes

• Prefer efficiency of compiled code where possible

• Important principle
• If you do not use a feature, your compiled code should be as 

efficient as if the language did not include the feature.



What is Data Abstraction?

• Abstract Data Types (ADTs)
• type implementation & operations

• hidden implementation

• types are central to problem solving
• Not procedures like in C

• a weapon against complexity

• built-in and user-defined types are ADTs



How Well are ADTs Supported in 
C?

Does C enforce the use of the ADTs interface 
and the hiding of its implementation?

No



C++

C++ is a superset of C, which has added 
features to support object-oriented 
programming

C++ supports classes

•things very like ADTs



How successful?

• Given the design goals and constraints,
• this is a very well-designed language

• Many users -- tremendous popular success

• However, very complicated design
• Many specific properties with complex behavior

• Difficult to predict from basic principles

• Most serious users chose subset of language
• Full language is complex and unpredictable

• Many implementation-dependent properties

• Language for adventure game fans



Further evidence

• Many style guides for using C++ “safely”

• Every group has established some conventions 
and prohibitions among themselves.
• don’t inherit implementation

• SGI compiler group -- no virtual functions

• Others

•



Overview of C++

• Additions and changes not related to objects
• type bool

• pass-by-reference & the Copy-Constructor

• user-defined overloading

• function template

• exception handling

• …



OO Programming Languages

• Four main concepts:

1.Abstraction: implementation details hidden inside a program unit
with a specific interface. The interface is a set of public functions (or
methods) over hidden data.

2.Inheritance: reusing the definition of one kind of object to define
another kind of object.

3.Dynamic lookup: a method is selected at run time, according to
the implementation of the object, not some static property of the
pointer/var used to name the object.

4.Subtyping is a relation on types that allows values (or objects) of
one type to be used in place of values (or objects) of another.

Inheritance Is Not Subtyping!

“Subtyping is a relation on interfaces, 
inheritance is a relation on implementations.”



C++ Object System

• Object-oriented features

1.Classes and Data Abstraction

2.Encapsulation

3.Inheritance
–Single and multiple inheritance

–Public and private base classes

4.Objects, with dynamic lookup of virtual functions

5.Subtyping
–Tied to inheritance mechanism

–A will be recognized by the compiler as a subtype of B only if B 
is a public base class of A


