
Introduction to Functional Programming with
Scala

Angelo Gargantini

INFO 3A AA 2016/17
credits: Pramode C.E

https://class.coursera.org/progfun-00

16 dicembre 2016



Workshop Plan

Here is what we will do:

Learn a bit of functional programming in Scala

Learn some important concepts like (NOT ALL): closures,
higher order functions, purity, lazy vs strict evaluation,
currying, tail calls/TCO, immutability, persistent data
structures, type inference etc!

Workshop material (slide/code samples) sul sito.

Angelo Gargantini Introduction to Functional Programming with Scala



Function Definition

def add(a:Int, b:Int):Int = a + b

val m:Int = add(1, 2)

println(m)

Note the use of the type declaration ”Int”. Scala is a ”statically
typed” language. We define ”add” to be a function which accepts
two parameters of type Int and returns a value of type Int.
Similarly, ”m” is defined as a variable of type Int.

Angelo Gargantini Introduction to Functional Programming with Scala



Function Definition

def fun(a: Int):Int = {

a + 1

a - 2

a * 3

}

val p:Int = fun(10)

println(p)

Note!

There is no explicit ”return” statement! The value of the last
expression in the body is automatically returned.

Angelo Gargantini Introduction to Functional Programming with Scala



Type Inference

def add(a:Int, b:Int) = a + b

val m = add(1, 2)

println(m)

We have NOT specified the return type of the function or the type
of the variable ”m”. Scala ”infers” that!

Angelo Gargantini Introduction to Functional Programming with Scala



Type Inference

def add(a, b) = a + b

val m = add(1, 2)

println(m)

This does not work! Scala does NOT infer type of function
parameters, unlike languages like Haskell/ML. Scala is said to do
local, ”flow-based” type inference while Haskell/ML do
Hindley-Milner type inference

References

1 http://en.wikipedia.org/wiki/Hindley-Milner

2 http://www.scala-lang.org/node/4654

Angelo Gargantini Introduction to Functional Programming with Scala

http://en.wikipedia.org/wiki/Hindley-Milner
http://www.scala-lang.org/node/4654


Expression Oriented Programming

val i = 3

val p = if (i > 0) -1 else -2

val q = if (true) "hello" else "world"

println(p)

println(q)

Unlike languages like C/Java, almost everything in Scala is an
”expression”, ie, something which returns a value! Rather than
programming with ”statements”, we program with ”expressions”

Angelo Gargantini Introduction to Functional Programming with Scala



Expression Oriented Programming

def errorMsg(errorCode: Int) = errorCode match {

case 1 => "File not found"

case 2 => "Permission denied"

case 3 => "Invalid operation"

}

println(errorMsg(2))

Case automatically ”returns” the value of the expression
corresponding to the matching pattern.

Angelo Gargantini Introduction to Functional Programming with Scala



Evaluation

Applications of parametrized functions are evaluated in a similar
way as operators. Expressions are evaluated before passing their
value to functions (values are passed to functions)

def square(x:Double) = x * x

square(2)

square(2+2)

square(square(2))

Angelo Gargantini Introduction to Functional Programming with Scala



Evaluation of function application

Given a function application f (e1, . . . , en)

1 Evaluate all function arguments (e1, . . . , en) from left to right.
Let v1, . . . , vn the corresponding values.

2 Replace the function application by the function’s right hand
side (function body), and, at the same time

3 Replace (substitute) the formal paramters of the function by
the actual arguments v1, . . . , vn

def sumOfSquare(x:Double, y: Double) = square(x) +

square(y)

sumOfSquare(3,2+2)

sumOfSquare(3,4)

square(3) + square(4)

3 * 3 + square(4)

9 + square(4)

....

Angelo Gargantini Introduction to Functional Programming with Scala



Evaluation of function application

This scheme of expression evaluation is called the substitution
model
The basic idea is to reduce an expression to a value
It can proved that this model can represent any algorithm (except
side effect).

Termination

Does every expression reduce to a value (in a finite number of
steps)? NO

def loop: Int = loop

loop

Angelo Gargantini Introduction to Functional Programming with Scala



Evaluation of function application

This scheme of expression evaluation is called the substitution
model
The basic idea is to reduce an expression to a value
It can proved that this model can represent any algorithm (except
side effect).

Termination

Does every expression reduce to a value (in a finite number of
steps)? NO

def loop: Int = loop

loop

Angelo Gargantini Introduction to Functional Programming with Scala



Alternative evaluation

The interpreter reduces function arguments to values before
rewriting the function application.
One could alternatively apply the function to unreduced arguments.
For instance:

sumOfSquare(3,2+2)

square(3) + square(2+2)

3*3 + (2+2) * (2+2)

....

Angelo Gargantini Introduction to Functional Programming with Scala



Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate )

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3)

same number of steps
test(3+4,8) CBV faster
test(7,2*4) CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala



Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate )

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps

test(3+4,8) CBV faster
test(7,2*4) CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala



Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate )

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8)

CBV faster
test(7,2*4) CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala



Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate )

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8) CBV faster

test(7,2*4) CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala



Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate )

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8) CBV faster
test(7,2*4)

CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala



Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate )

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8) CBV faster
test(7,2*4) CBN faster

test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala



Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate )

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8) CBV faster
test(7,2*4) CBN faster
test(3+4,2*4)

same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala



Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate )

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8) CBV faster
test(7,2*4) CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala



Call by name functions

Scala normally uses call-by-value
But if the type of a function parameter with => it uses
call-by-name
Example

def constOne(x:Int, y: => Int) = 1

Using pen and paper, trace the evaluation of the following function
calls for the function constOne:
constOne(1+2,loop)
constOne(loop,1+2)

Angelo Gargantini Introduction to Functional Programming with Scala



Recursion

Recursion means a function can call itself repeatedly.

Recursion plays a big role in pure functional programming and
Scala supports recursion functions very well.

Consider the Eulid’s algorithm

def gcd(a: Int, b: Int) = if (b == 0) a else gcd(b,a%b)

evaluate gcd(14,21) ...
Consider the factorial algorithm

def factorial(n: Int) = if (n == 0) 1 else

n*factorial(n-1)

evaluate factorial(4) ...

Angelo Gargantini Introduction to Functional Programming with Scala



Recursion

Recursion means a function can call itself repeatedly.

Recursion plays a big role in pure functional programming and
Scala supports recursion functions very well.

Consider the Eulid’s algorithm

def gcd(a: Int, b: Int) = if (b == 0) a else gcd(b,a%b)

evaluate gcd(14,21) ...
Consider the factorial algorithm

def factorial(n: Int) = if (n == 0) 1 else

n*factorial(n-1)

evaluate factorial(4) ...

Angelo Gargantini Introduction to Functional Programming with Scala



Recursion

// sum n + (n-1) + (n-2) + ... + 0

def sum(n: Int): Int =

if (n == 0) 0 else n + sum(n - 1)

val m = sum(10)

println(m)

Try calling the function ”sum” with a large number (say 10000) as
parameter! You get a stack overflow!

Angelo Gargantini Introduction to Functional Programming with Scala



Tail Calls and TCO

If a function calls itself as its last action is called tail recursion.
The function’s stack frame can be reused (Tail Call Optimization).
Rewrite the function as tail recursion.

def factorial(n: Int): Int = {

def loop(acc: Int, n: Int)=

if ( n == 0) acc

else loop(n*acc, n-1)

loop(0,n)

}

Angelo Gargantini Introduction to Functional Programming with Scala



Tail Calls and TCO

If a function calls itself as its last action is called tail recursion.
The function’s stack frame can be reused (Tail Call Optimization).
Rewrite the function as tail recursion.

def factorial(n: Int): Int = {

def loop(acc: Int, n: Int)=

if ( n == 0) acc

else loop(n*acc, n-1)

loop(0,n)

}

Angelo Gargantini Introduction to Functional Programming with Scala



Tail Calls and TCO

def sum(n: Int, acc: Int):Int =

if(n == 0) acc else sum(n - 1, acc + n)

val r = sum(10000, 0)

println(r)

This is a ”tail-recursive” version of the previous function - the
Scala compiler converts the tail call to a loop, thereby avoiding
stack overflow!

Proviamo con la segnatura semplificata e un loop interno.

Angelo Gargantini Introduction to Functional Programming with Scala



Tail Calls and TCO

(sum 4)

(4 + sum 3)

(4 + (3 + sum 2))

(4 + (3 + (2 + sum 1)))

(4 + (3 + (2 + (1 + sum 0))))

(4 + (3 + (2 + (1 + 0))))

(4 + (3 + (2 + 0)))

(4 + (3 + 2))

(4 + 5)

(9)

------------------------------

(sum 4 0)

(sum 3 4)

(sum 2 7)

(sum 1 8)

(sum 0 9)

(9)

-------------------------------

Angelo Gargantini Introduction to Functional Programming with Scala



Higher-Order Functions

Functional languages treat functions as first-class values

This means that, like any other value, a function can be
passed as a parameter and returned as a result

Functions that take values and variable are called first order
functions

Functions that take other functions as parameters or return
functions are called higher order functions

Angelo Gargantini Introduction to Functional Programming with Scala



Summation once again!

take the sum of the integers from a and b:

def sumInts(a: Int, b: Int) =

if (a > b) 0 else a + sumInts(a+1,b)

If you want to sum the squares or cubes from a and b:

def sqr(x: Int) = x * x

def sumSquares(a: Int, b: Int): Int =

if (a > b) 0 else sqr(a) + sumSquares(a + 1, b)

def cube(x: Int) = x * x * x

def sumCubes(a: Int, b: Int): Int =

if (a > b) 0 else cube(a) + sumCubes(a + 1, b)

Angelo Gargantini Introduction to Functional Programming with Scala



Summation once again!

take the sum of the integers from a and b:

def sumInts(a: Int, b: Int) =

if (a > b) 0 else a + sumInts(a+1,b)

If you want to sum the squares or cubes from a and b:

def sqr(x: Int) = x * x

def sumSquares(a: Int, b: Int): Int =

if (a > b) 0 else sqr(a) + sumSquares(a + 1, b)

def cube(x: Int) = x * x * x

def sumCubes(a: Int, b: Int): Int =

if (a > b) 0 else cube(a) + sumCubes(a + 1, b)

Angelo Gargantini Introduction to Functional Programming with Scala



Summation

Exercise

Define the sum of factorial from a and b

Idea

Define a sum generic with the respect to the operation applied to
each number?

def operation(x:Int) = ...

def sumOperation(a: Int, b: Int) =

if (a > b) 0 else operation(a) + sumOperation(a+1,b)

Angelo Gargantini Introduction to Functional Programming with Scala



Summation

Exercise

Define the sum of factorial from a and b

Idea

Define a sum generic with the respect to the operation applied to
each number?

def operation(x:Int) = ...

def sumOperation(a: Int, b: Int) =

if (a > b) 0 else operation(a) + sumOperation(a+1,b)

Angelo Gargantini Introduction to Functional Programming with Scala



Higher order functions

def sum(f: Int=>Int, a: Int, b: Int): Int =

if (a > b) 0 else f(a) + sum(f, a + 1, b)

”sum” is now a ”higher order” function! It’s first parameter is a
function which maps an Int to an Int

The type ”Int” represents a simple Integer value. The type Int =>

Int represents a function which accepts an Int and returns an Int.

def identity(x: Int) = x

def sqr(x: Int) = x * x

def cube(x: Int) = x * x * x

def fact(x:Int) = ...

println(sum(identity, 1, 10))

println(sum(sqr, 1, 10))

println(sum(cube, 1, 10))

Angelo Gargantini Introduction to Functional Programming with Scala



Higher order functions

def sum(f: Int=>Int, a: Int, b: Int): Int =

if (a > b) 0 else f(a) + sum(f, a + 1, b)

”sum” is now a ”higher order” function! It’s first parameter is a
function which maps an Int to an Int

The type ”Int” represents a simple Integer value. The type Int =>

Int represents a function which accepts an Int and returns an Int.

def identity(x: Int) = x

def sqr(x: Int) = x * x

def cube(x: Int) = x * x * x

def fact(x:Int) = ...

println(sum(identity, 1, 10))

println(sum(sqr, 1, 10))

println(sum(cube, 1, 10))

Angelo Gargantini Introduction to Functional Programming with Scala



Anonymous functions

Passing functions as parameters leads to the creation of many
functions. Sometime is tedious. It can be avoided.
Like:

def name = "Angelo"; println(name)

can be written as

println("Angelo")

we want to define functions without an explicit name:
anonymous functions

Angelo Gargantini Introduction to Functional Programming with Scala



Anonymous functions

Can be written as:
(Parameters) => Body

We can create ”anonymous” functions on-the-fly! x => x*x is a
function which takes an ”x” and returns x*x

(x:Int)=> x *x

The parameter type can be omitted if the compiler can infer it:

x => x *x

println(sum(x=>x, 1, 10))

println(sum(x=>x*x, 1, 10))

println(sum(x=>x*x*x, 1, 10))

Angelo Gargantini Introduction to Functional Programming with Scala



Higher order functions and recursive calls

Rewrite sum with the tail recursion?

def sum(f: Int => Int, a: Int, b: Int): Int = {

def loop(a: Int, acc: Int): Int = {

if (a > b) acc

else loop(a + 1, acc + f(a))

}

loop(a, 0)

}

Angelo Gargantini Introduction to Functional Programming with Scala



Higher order functions and recursive calls

Rewrite sum with the tail recursion?

def sum(f: Int => Int, a: Int, b: Int): Int = {

def loop(a: Int, acc: Int): Int = {

if (a > b) acc

else loop(a + 1, acc + f(a))

}

loop(a, 0)

}

Angelo Gargantini Introduction to Functional Programming with Scala



Currying

Here is the definition from Wikipedia:

In mathematics and computer science, currying is the technique of
transforming a function that takes multiple arguments (or a tuple
of arguments) in such a way that it can be called as a chain of
functions, each with a single argument. It was originated by Moses
Schonfinkel and later re-discovered by Haskell Curry.

Let’s try to do this in Scala!

Angelo Gargantini Introduction to Functional Programming with Scala



Currying - returning functions

def sumInts(a:Int, b: Int) = sum(x=>x, 1, 10)

def sumCubes(a:Int, b: Int) = sum(x=>x*x, 1, 10)

def sumFactorial(a:Int, b: Int) = sum(fact, 1, 10)

a and b are passed to sum unchanged. Can we rewrite sum and
avoid the use of a and b?

sum can return a function that takes two Ints and return an Int

def sum(f: Int => Int): (Int,Int) => Int = { ...}

sum takes a function f and return a function (Int,Int) => Int

Angelo Gargantini Introduction to Functional Programming with Scala



Currying - returning functions

def sumInts(a:Int, b: Int) = sum(x=>x, 1, 10)

def sumCubes(a:Int, b: Int) = sum(x=>x*x, 1, 10)

def sumFactorial(a:Int, b: Int) = sum(fact, 1, 10)

a and b are passed to sum unchanged. Can we rewrite sum and
avoid the use of a and b?
sum can return a function that takes two Ints and return an Int

def sum(f: Int => Int): (Int,Int) => Int = { ...}

sum takes a function f and return a function (Int,Int) => Int

Angelo Gargantini Introduction to Functional Programming with Scala



Currying - returning functions

def sum(f: Int => Int): (Int,Int) => Int = {

def sumF(a: Int, b: Int): Int = {

if (a > b) 0

else f(a) + sumF(a + 1, b)

}

sumF

}

Angelo Gargantini Introduction to Functional Programming with Scala



Currying - stepwise application

The basic sum functions can be defined without parameters:

def sumInts = sum(x=>x)

def sumCubes = sum(x=>x*x)

def sumFactorial = sum(fact)

sumInts(3,4) ...
or we could write

sum(x=>x)(3,4)

Angelo Gargantini Introduction to Functional Programming with Scala



Multiple parameter list

def sum(f: Int => Int, a: Int, b: Int): Int =

Can be rewritten as:

def sum(f: Int => Int) : (Int, Int) => Int =

or equivalently, by using multiple parameter lists:

def sum(f: Int => Int)(a: Int, b: Int): Int =

the advantage wrt the first is that se can pass only one argument
like sum(cube) the advantage wrt the second is that we can use a
and b directly in the body

Angelo Gargantini Introduction to Functional Programming with Scala



Currying - two argument functions

def addA(x: Int, y: Int): Int =

x + y

def addB(x: Int):Int=>Int =

y => x + y

val a = addA(10, 20)

val b = addB(10)(20)

println(a)

println(b)

Angelo Gargantini Introduction to Functional Programming with Scala



Currying - three argument functions

def addA(x: Int, y: Int, z: Int) = x + y + z

def addB(x: Int): Int => (Int => Int) =

y => (z => x + y + z)

val a = addA(1, 2, 3)

val b = addB(1)(2)(3)

println(a)

println(b)

It is now easy to see how the idea can be generalized to N
argument functions!

Angelo Gargantini Introduction to Functional Programming with Scala



Exercise

1 write a function that calculates the product of the values for
the points on a gievn interval

2 write a function that calculates the product of the values of a
function f for the points on a given interval

3 write the factorial in terms of product

4 can we write a more general function which generalizes both
sum and product

Angelo Gargantini Introduction to Functional Programming with Scala



Exercise

1 write a function that calculates the product of the values for
the points on a gievn interval

2 write a function that calculates the product of the values of a
function f for the points on a given interval

3 write the factorial in terms of product

4 can we write a more general function which generalizes both
sum and product

Angelo Gargantini Introduction to Functional Programming with Scala



Immutability

Why? Immutable objects are automatically thread-safe (you don’t
have to worry about object being changed by another thread)
Compiler can reason better about immutable values -¿ optimization
Steve Jenson from Twitter: “Start with immutability, then use
mutability where you find appropriate.”

Angelo Gargantini Introduction to Functional Programming with Scala



Collezioni

Mutable and Immutable Collections

Scala collections systematically distinguish between mutable
and immutable collections.

A mutable collection can be updated or extended in place.

Immutable collections, by contrast, never change.

You have still operations that simulate additions, removals, or
updates, but those operations will in each case return a new
collection and leave the old collection unchanged.

Angelo Gargantini Introduction to Functional Programming with Scala



Alto livello

collections in package scala.collection

Angelo Gargantini Introduction to Functional Programming with Scala



Immutable

Queste sono le implementazioni immutabili

Angelo Gargantini Introduction to Functional Programming with Scala



List

Le Lists sono immutabili (non può essere cambiato il contenuto)
List[String] contains Strings

val lst = List("b", "c", "d")

lst.head // "b"

lst.tail // List("c", "d")

val lst2 = "a" :: lst // cons operator

Nil = synonym for empty list

val l = 1 :: 2 :: 3 :: Nil

List concatenation:

val l2 = List(1, 2, 3) ::: List(4, 5)

Angelo Gargantini Introduction to Functional Programming with Scala



Foreach

Posso usare foreach per applicare una funzione a tutti gli elementi
di una lista:

val list3 = List("mff", "cuni", "cz")

Following 3 calls are equivalent

list.foreach((s : String) => println(s))

list.foreach(s => println(s))

list.foreach(println)

For comprehensions

for (s <- list) println(s)

for (s <- list if s.length() == 4) println(s)

Angelo Gargantini Introduction to Functional Programming with Scala



Maps and Sets

Ci sono anche mappe ed insiemi

Angelo Gargantini Introduction to Functional Programming with Scala



Maps

Esempio di uso di mappe

import scala.collection._

val cache = new mutable.HashMap[String,String];

cache += "foo" -> "bar";

val c = cache("foo");

The rest of Map and Set interface looks as you would expect

Angelo Gargantini Introduction to Functional Programming with Scala



Mutable List: ListBuffer

ListBuffer[T] is a mutable List Like Java’s ArrayList¡T¿

import scala.collection.mutable._

val list = new ListBuffer[String]

list += "Vicky"

list += "Christina"

val str = list(0)

Angelo Gargantini Introduction to Functional Programming with Scala



scala.Seq

scala.Seq is the supertype that defines methods like: filter,
fold, map, reduce, take, contains, . . .

List, Array, Maps. . . descend from Seq

Angelo Gargantini Introduction to Functional Programming with Scala



From Java to Scala

Iterator <=> java.util.Iterator

Iterator <=> java.util.Enumeration

Iterable <=> java.lang.Iterable

Iterable <=> java.util.Collection

mutable.Buffer <=> java.util.List

mutable.Set <=> java.util.Set

mutable.Map <=> java.util.Map

mutable.ConcurrentMap <=> java.util.concurrent.ConcurrentMap

Angelo Gargantini Introduction to Functional Programming with Scala



Iterate – foreach function

Every collection in Scala’s library defines (or inherits) a foreach
method

val names = List("Daniel", "Chris", "Joseph")

names.foreach { name =>

println(name)

}}

foreach is a “higher-order” method, due to the fact that it accepts
a parameter which is itself another method

name => println(name)

names.foreach(println)

Angelo Gargantini Introduction to Functional Programming with Scala



Foreach - istruzione

There are times that we just want to use a syntax which is similar
to the for-loops available in other languages.

val nums = List(1, 2, 3, 4, 5)

var sum = 0

for (n <- nums) { sum += n }

Oppure se volessi usare una funzione + variabile locale:

var ss = 0;

def sinc(x:Int) = { ss += x }

nums.foreach(sinc)

Angelo Gargantini Introduction to Functional Programming with Scala



Folding

Looping is nice, but sometimes there are situations where it is
necessary to somehow combine or examine every element in a
collection, producing a single value as a result. Data una List[A]:

def foldLeft[B](z: B)(f: (B, A) => B): B

The foldLeft function goes through the whole List[A], from head to
tail, and passes each value to f. For the first list item, that first
parameter, z, is used as the first parameter to f. For the second list
item, the result of the first call to f is used as the B type parameter.

Angelo Gargantini Introduction to Functional Programming with Scala



foldLeft

def foldLeft[B](z: B)(f: (B, A) => B): B

Dove:

1 z è l’elemento iniziale di tipo B

2 f è l’operazione che dato un B e un A alla volta, costruisce
mano a mano il dato riassuntivo di tipo B

Angelo Gargantini Introduction to Functional Programming with Scala



Folding Esempi

1 Somma di tutti i numeri in nums

def myf(x: Int, y: Int) = x+y

val sum = nums.foldLeft(0)(myf)

2 oppure con funzione anonima

val sum = nums.foldLeft(0)((total, n) => total + n)

Angelo Gargantini Introduction to Functional Programming with Scala



Reduce

Fold has a closely related operation in Scala called “reduce” which
can be extremely helpful in merging the elements of a sequence
where leading or trailing values might be a problem. Consider the
ever-popular example of transforming a list of String(s) into a
single, comma-delimited value:

var nn = List("a","b", "c")// voglio stampare "a,b,c"

println(nn.foldLeft("")((x, y) => x + "," + y))

Stampa però: ,a,b,c

Angelo Gargantini Introduction to Functional Programming with Scala



Reduce

Solution: use a reduce, rather than a fold. Reduce distinguishes
itself from fold in that it does not require an initial value to “prime
the sequence”. Rather, it starts with the very first element in the
sequence and moves on to the end.

def reduceLeft(f: (A, A) => A): A

Esempi:

println(nn.reduceLeft((x, y) => x + "," + y))

--> a,b,c

Altro esempio: calcolo del max in lista

l.reduceLeft((x, y) => if (x>y) x else y )

Angelo Gargantini Introduction to Functional Programming with Scala



Reduce

def reduceLeft(f: (A, A) => A): A

Angelo Gargantini Introduction to Functional Programming with Scala



Esempi di Folder/Reduce

Fai la somma/prodotto dei numeri in una lista Restituisci la stringa
piu’ lunga Trova la dimensione della stringa piu’ lunga ....

Angelo Gargantini Introduction to Functional Programming with Scala



Filter/map

fold can be an extremely useful tool for applying a computation to
each element in a collection and arriving at a single result if we
want to apply a method to every element in a collection in-place
(as it were), creating a new collection of the same type with the
modified elements? Esempi, data una lista, costruire la lista dei
doppi

var ll = List(3, 4, 5)

// lista dei doppi

def doppio(x: Int) = 2 * x

println(ll.map(doppio))

La lista delle lunghezze di una stringa

nomi.map( x => x.length())

Angelo Gargantini Introduction to Functional Programming with Scala



Filter

Alcune volte voglio estrarre delle liste filtrando il contenuto Ad
esempio: data una lista estrarre la lista pari

def pari = (x: Int) => (x % 2 == 0)

println(ll.filter(pari))

Angelo Gargantini Introduction to Functional Programming with Scala



Using Map+Reduce

Spesso si usa map insieme a reduce:

Con map trasformo i dati per renderli più trattabili

Con reduce ottengo un dato sintetico

Sono algoritmi che si possono parallelizzare

Vedi google framework mapreduce
http://it.wikipedia.org/wiki/MapReduce

oppure spark http://spark.apache.org/

Angelo Gargantini Introduction to Functional Programming with Scala


