
A Brief Intro to Scala
Informatica III

Origin

• Started at 2001 by Martin Odersky at EPFL
Lausanne, Switzerland

• Scala 2.0 released in 2006
• Current version 2.10.3
• IDE (eclipse based) 3.0.2

• Twitter backend runs on Scala
– LinkedIn, Siemens, Sony, …

Scala
• Statically Typed
• Runs on JVM, full inter-op with

Java
• Object Oriented
• Functional
• Dynamic Features

Scala is Practical

• Can be used as drop-in replacement for Java
– Mixed Scala/Java projects

• Use existing Java libraries

• Use existing Java tools (Ant, Maven, JUnit, etc…)

• Decent IDE Support (NetBeans, IntelliJ, Eclipse)

5

Java
• What’s wrong with Java?

– Verbose
• Too much of Thing thing = new Thing();
• Too much “boilerplate,” for example, getters and setters

– …

• What’s right with Java?
– Very popular
– Object oriented (mostly), which is important for large projects
– Strong typing (more on this later)
– The fine large library of classes
– The JVM! Platform independent, highly optimized

6

Scala is like Java, except when it isn’t

• Java is a good language, and Scala is a lot like it
• For each difference, there is a reason--none of the changes

are “just to be different”
• Scala and Java are (almost) completely interoperable

– Call Java from Scala? No problem!
– Call Scala from Java? Some restrictions, but mostly OK.
– Scala compiles to .class files (a lot of them!), and can be run

with either the scala command or the java command
• To understand Scala, it helps to understand the reasons for

the changes, and what it is Scala is trying to accomplish

7

Consistency is good

• In Java, every value is an object--unless it’s a primitive
– Numbers and booleans are primitives for reasons of efficiency,

so we have to treat them differently (you can’t “talk” to a
primitive)

• In Scala, all values are objects. Period.
– The compiler turns them into primitives, so no efficiency is

lost (behind the scenes, there are objects like RichInt)

• Java has operators (+, <, ...) and methods, with different
syntax

• In Scala, operators are just methods, and in many cases
you can use either syntax

Scala is Concise

Type Inference

val sum = 1 + 2 + 3

val num s = List(1, 2, 3)

val m ap = M ap("abc" -> List(1,2,3))

“caspisce” il tipo di una espressione.

Explicit Types

val sum : Int = 1 + 2 + 3

val num s: List[Int] = List(1, 2, 3)

val m ap: M ap[String, List[Int]] = ...

Higher Level

// Java – Check if string has uppercase
character

boolean hasUpperCase = false;

for(int i = 0; i < name.length(); i++) {

 if(Character.isUpperCase(name.charAt(i)))
{

 hasUpperCase = true;

 break;

 }

}

Higher Level

// Scala

val hasUpperCase =
name.exists(_.isUpperCase)

Less Boilerplate
// Java
public class Person {
 private String name;
 private int age;
 public Person(String name, Int age) { // constructor
 this.name = name;
this.age = age;

 }
 public String getName() { // name getter
 return name;
 }
 public int getAge() { // age getter
 return age;
 }
 public void setName(String name) { // name setter
 this.name = name;
 }
 public void setAge(int age) { // age setter
 this.age = age;
 }
}

Less Boilerplate

// Scala
class Person(var name: String, var age:
Int)

Less Boilerplate

// Scala

class Person(var name: String, private var
_age: Int) {

 def age = _age // Getter for age

 def age_=(newAge:Int) { // Setter for age

 println("Changing age to: "+newAge)

 _age = newAge

 }

}

Variables and Values

// variable
var foo = "foo"
foo = "bar" // okay

// value
val bar = "bar"
bar = "foo" // nope

17

null

• “I call it my billion-dollar mistake. It was the invention of the null
reference in 1965. At that time, I was designing the first
comprehensive type system for references in an object oriented
language (ALGOL W). My goal was to ensure that all use of
references should be absolutely safe, with checking performed
automatically by the compiler. But I couldn't resist the
temptation to put in a null reference, simply because it was so
easy to implement. This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused
a billion dollars of pain and damage in the last forty years.”

 --Tony Hoare

18

null in Scala
• In Java, any method that is supposed to return an object could

return null
– Here are your options:

• Always check for null
• Always put your method calls inside a try...catch
• Make sure the method can’t possibly return null

• Yes, Scala has null--but only so that it can talk to Java
• In Scala, if a method could return “nothing,” write it to return

an Option object, which is either Some(theObject) or
None
– This forces you to use a match statement--but only when one is really

needed!

19

Referential transparency
• In Scala, variables are really functions

– Huh?

• In Java, if age is a public field of Person, you can say:
 david.age = david.age + 1;
but if age is accessed via methods, you would say:
 david.setAge(david.getAge() + 1);

• In Scala, if age is a public field of Person, you can say:
 david.age = david.age + 1;
but if Person defines methods age and age_=, you would say (the same!)
 david.age = david.age + 1;

• In other words, if you want to access a piece of data in Scala, you don’t have to know
whether it is computed by a method or held in a simple variable
– This is the principle of uniform access
– Scala won’t let you use parentheses when you call a function with no parameters

Scala is Object Oriented
Scala is Functional

What is Multiparadigm Programming?

• Definition:
• A multiparadigm programming language provides “a

framework in which programmers can work in a variety
of styles, freely intermixing constructs from different
paradigms.” [Tim Budd]

• Programming paradigms:
• imperative versus declarative (e.g., functional, logic)
• other dimensions – object-oriented, component-

oriented, concurrency-oriented, etc.

CS3180 (Prasad) ■21 ScalaMulti

Why Learn Multiparadigm Programming?

• Tim Budd:
“Research results from the psychology of programming
indicate that expertise in programming is far more strongly
related to the number of different programming styles
understood by an individual than it is the number of years of
experience in programming.”

• The “goal of multiparadigm computing is to provide ... a
number of different problem-solving styles” so that a
programmer can “select a solution technique that best
matches the characteristics of the problem”.

CS3180 (Prasad) ■22 ScalaMulti

Why Teach Multiparadigm Programming?

• Contemporary imperative and object-oriented languages
increasingly have functional programming features, e.g.,
– higher order functions (closures)
– list comprehensions

• New explicitly multiparadigm (object-
oriented/functional) languages are appearing, e.g.,
– Scala on the Java platform (and .Net in future)
– F# on the .Net platform

CS3180 (Prasad) ■23 ScalaMulti

24

Functional languages
• The best-known functional languages are ML,

OCaml, and Haskell
• Functional languages are regarded as:

– “Ivory tower languages,” used only by academics
(mostly but not entirely true)

– Difficult to learn (mostly true)
– The solution to all concurrent programming problems

everywhere (exaggerated, but not entirely wrong)
• Scala is an “impure” functional language--you can

program functionally, but it isn’t forced upon you

25

Scala as a functional language

• The hope--my hope, anyway--is that Scala will let people “sneak
up” on functional programming (FP), and gradually learn to use it
– This is how C++ introduced Object-Oriented programming

• Even a little bit of functional programming makes some things a
lot easier

• Meanwhile, Scala has plenty of other attractions

• FP really is a different way of thinking about programming, and
not easy to master...

• ...but...
• Most people that master it, never want to go back

26

Genealogy

Scala

Java

C

C++

Simula

Smalltalk

Prolog

Erlang
Haskell

ML

Lisp

functional
programming syntax

objects

pattern
matching

Actors

Scala is Dynamic

(Okay not really, but it has lots of
features typically only found in

Dynamic languages)

Read-Eval-Print Loop
bash$ scala
Welcome to Scala version 2.8.1.final (Java HotSpot(TM) 64-Bit Server VM, Java 1.6.0_22).
Type in expressions to have them evaluated.
Type :help for more information.
scala> class Foo { def bar = "baz" }
defined class Foo
scala> val f = new Foo
f: Foo = Foo@51707653
scala> f.bar
res2: java.lang.String = baz

Noi usermo però ScalaIDE

Structural Typing

// Type safe Duck Typing
def doTalk(any:{def talk:String}) {
 println(any.talk)
}

class Duck { def talk = "Q uack" }
class Dog { def talk = "Bark" }

doTalk(new Duck)  "Q uack"
doTalk(new Dog)  "Bark"

Scala has tons of other cool stuff

Default Parameter Values

def hello(foo:Int = 0, bar:Int = 0) {
 println("foo: "+ foo+ " bar: "+ bar)
}

hello()  foo: 0 bar: 0
hello(1)  foo: 1 bar: 0
hello(1,2)  foo: 1 bar: 2

Named Parameters

def hello(foo:Int = 0, bar:Int = 0) {
 println("foo: "+ foo+ " bar: "+ bar)
}

hello(bar= 6)  foo: 0 bar: 6
hello(foo= 7)  foo: 7 bar: 0
hello(foo= 8,bar= 9)  foo: 8 bar: 9

Everything Returns a Value
val a = if(true) "yes" else "no"

val b = try{
 "foo"
} catch {
 case _ = > "error"
}

val c = {
 println("hello")
 "foo"
}

Lazy Vals

// initialized on first access
lazy val foo = {
 println("init")
 "bar"
}

foo  init
foo 
foo 

Nested Functions
// Can nest m ultiple levels of functions
def outer() {
 var m sg = "foo"
 def one() {
 def tw o() {
 def three() {
 println(m sg)
 }
 three()
 }
 tw o()
 }
 one()
}

By-Name Parameters
... argument is not evaluated at the point of function application, but instead is

evaluated at each use within the function.

object passbynam e {
 def nano(): Long = {
 val tim e = System .nanoTim e
 println("Getting nano :" + tim e)
 tim e
 }
 // = > indicates a by-nam e
param eter

 def delayed(t: = > Long) = {
 println("In delayed m ethod")
 println("Param : " + t)
 t
 }
//println(delayed(nano()))
 //

In delayed m ethod
 Getting nano :
510810040142626
Param : 510810040142626
Getting nano :510810040495560
510810040495560

Nano viene chiamato due volte !

Foreach

val list3 = List("mff", "cuni", "cz")

• Following 3 calls are equivalent

 list.foreach((s : String) => println(s))

 list.foreach(s => println(s))

 list.foreach(println)

Many More Features
• Actors
• Annotations  @ foo def hello = "w orld"
• Case Classes  case class Foo(bar:String)
• Currying  def foo(a:Int,b:Boolean)(c:String)
• For Comprehensions
  for(i < - 1.to(5) if i % 2 = = 0) yield i
• Generics  class Foo[T](bar:T)
• Package Objects
• Partially Applied Functions
• Tuples  val t = (1,"foo","bar")
• Type Specialization
• XML Literals  val node = < hello> w orld< /hello>
• etc…

	Diapositiva 1
	Origin
	Scala
	Scala is Practical
	Java
	Scala is like Java, except when it isn’t
	Consistency is good
	Diapositiva 8
	Type Inference
	Explicit Types
	Higher Level
	Higher Level
	Less Boilerplate
	Less Boilerplate
	Less Boilerplate
	Variables and Values
	null
	null in Scala
	Referential transparency
	Diapositiva 20
	What is Multiparadigm Programming?
	Why Learn Multiparadigm Programming?
	Why Teach Multiparadigm Programming?
	Functional languages
	Scala as a functional language
	Genealogy
	Diapositiva 27
	Read-Eval-Print Loop
	Structural Typing
	Diapositiva 30
	Default Parameter Values
	Named Parameters
	Everything Returns a Value
	Lazy Vals
	Nested Functions
	By-Name Parameters
	Foreach
	Many More Features

