
Introduction to Functional Programming with
Scala

Angelo Gargantini

INFO 3A AA 2013/14
credits: Pramode C.E

https://class.coursera.org/progfun-00

December 9, 2013

Workshop Plan

Here is what we will do:

Learn a bit of functional programming in Scala

Learn some important concepts like (NOT ALL): closures,
higher order functions, purity, lazy vs strict evaluation,
currying, tail calls/TCO, immutability, persistent data
structures, type inference etc!

Workshop material (slide/code samples) sul sito.

Angelo Gargantini Introduction to Functional Programming with Scala

Function Definition

def add(a:Int, b:Int):Int = a + b

val m:Int = add(1, 2)

println(m)

Note the use of the type declaration ”Int”. Scala is a ”statically
typed” language. We define ”add” to be a function which accepts
two parameters of type Int and returns a value of type Int.
Similarly, ”m” is defined as a variable of type Int.

Angelo Gargantini Introduction to Functional Programming with Scala

Function Definition

def fun(a: Int):Int = {

a + 1

a - 2

a * 3

}

val p:Int = fun(10)

println(p)

Note!

There is no explicit ”return” statement! The value of the last
expression in the body is automatically returned.

Angelo Gargantini Introduction to Functional Programming with Scala

Type Inference

def add(a:Int, b:Int) = a + b

val m = add(1, 2)

println(m)

We have NOT specified the return type of the function or the type
of the variable ”m”. Scala ”infers” that!

Angelo Gargantini Introduction to Functional Programming with Scala

Type Inference

def add(a, b) = a + b

val m = add(1, 2)

println(m)

This does not work! Scala does NOT infer type of function
parameters, unlike languages like Haskell/ML. Scala is said to do
local, ”flow-based” type inference while Haskell/ML do
Hindley-Milner type inference

References

1 http://en.wikipedia.org/wiki/Hindley-Milner

2 http://www.scala-lang.org/node/4654

Angelo Gargantini Introduction to Functional Programming with Scala

http://en.wikipedia.org/wiki/Hindley-Milner
http://www.scala-lang.org/node/4654

Expression Oriented Programming

val i = 3

val p = if (i > 0) -1 else -2

val q = if (true) "hello" else "world"

println(p)

println(q)

Unlike languages like C/Java, almost everything in Scala is an
”expression”, ie, something which returns a value! Rather than
programming with ”statements”, we program with ”expressions”

Angelo Gargantini Introduction to Functional Programming with Scala

Expression Oriented Programming

def errorMsg(errorCode: Int) = errorCode match {

case 1 => "File not found"

case 2 => "Permission denied"

case 3 => "Invalid operation"

}

println(errorMsg(2))

Case automatically ”returns” the value of the expression
corresponding to the matching pattern.

Angelo Gargantini Introduction to Functional Programming with Scala

Evaluation

Applications of parametrized functions are evaluated in a similar
way as operators. Expressions are evaluaed before passing their
value to functions (values are passed to functions)

def square(x:Double) = x * x

square(2)

square(2+2)

square(square(2))

Angelo Gargantini Introduction to Functional Programming with Scala

Evaluation of function application

Given a function application f (e1, . . . , en)

1 Evaluate all function arguments (e1, . . . , en) from left to right.
Let v1, . . . , vn the corresponding values.

2 Replace the function application by the function’s right hand
side (function body), and, at the same time

3 Replace (substitute) the formal paramters of the function by
the actual arguments v1, . . . , vn

def sumOfSquare(x:Double, y: Double) = square(x) +

square(y)

sumOfSquare(3,2+2)

sumOfSquare(3,4)

square(3) + square(4)

3 * 3 + square(4)

9 + square(4)

....

Angelo Gargantini Introduction to Functional Programming with Scala

Evaluation of function application

This scheme of expression evaluation is called the substitution
model
The basic idea is to reduce an expression to a value
It can proved that this model can represent any algorithm (except
side effect).

Termination

Does every expression reduce to a value (in a finite number of
steps)? NO

def loop: Int = loop

loop

Angelo Gargantini Introduction to Functional Programming with Scala

Evaluation of function application

This scheme of expression evaluation is called the substitution
model
The basic idea is to reduce an expression to a value
It can proved that this model can represent any algorithm (except
side effect).

Termination

Does every expression reduce to a value (in a finite number of
steps)? NO

def loop: Int = loop

loop

Angelo Gargantini Introduction to Functional Programming with Scala

Alternative evaluation

The interpreter reduces function arguments to values before
rewriting the function application.
One could alternatively apply the function to unreduced arguments.
For instance:

sumOfSquare(3,2+2)

square(3) + square(2+2)

3*3 + (2+2) * (2+2)

....

Angelo Gargantini Introduction to Functional Programming with Scala

Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate)

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3)

same number of steps
test(3+4,8) CBV faster
test(7,2*4) CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala

Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate)

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps

test(3+4,8) CBV faster
test(7,2*4) CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala

Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate)

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8)

CBV faster
test(7,2*4) CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala

Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate)

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8) CBV faster

test(7,2*4) CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala

Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate)

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8) CBV faster
test(7,2*4)

CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala

Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate)

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8) CBV faster
test(7,2*4) CBN faster

test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala

Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate)

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8) CBV faster
test(7,2*4) CBN faster
test(3+4,2*4)

same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala

Pass by-name

The first strategy is call-by-value, the second is call-by-name (they
are equivalent if they terminate - but CBN may terminate)

call-by-value: evaluates every function argument only once

call-by-name: a function is evaluated only if necessary

def test(x:Int, y:Int) = x * x

which call is fastest (fewest num. operations)?

test(2,3) same number of steps
test(3+4,8) CBV faster
test(7,2*4) CBN faster
test(3+4,2*4) same number of steps

Angelo Gargantini Introduction to Functional Programming with Scala

Call by name functions

Scala normally uses call-by-value
But if the type of a function parameter with => it uses
call-by-name
Example

def constOne(x:Int, y: => Int) = 1

Using pen and paper, trace the evaluation of the following function
calls for the function constOne:
constOne(1+2,loop)
constOne(loop,1+2)

Angelo Gargantini Introduction to Functional Programming with Scala

Recursion

Consider the Eulid’s algorithm

def gcd(a: Int, b: Int) = if (b == 0) a else gcd(b,a%b)

evaluete gcd(14,21) ...
Consider the factorial algorithm

def factorial(n: Int) = if (n == 0) 1 else

n*factorial(n-1)

evaluete factorial(4) ...

Angelo Gargantini Introduction to Functional Programming with Scala

Recursion

// sum n + (n-1) + (n-2) + ... + 0

def sum(n: Int): Int =

if (n == 0) 0 else n + sum(n - 1)

val m = sum(10)

println(m)

Try calling the function ”sum” with a large number (say 10000) as
parameter! You get a stack overflow!

Angelo Gargantini Introduction to Functional Programming with Scala

Tail Calls and TCO

If a function calls itself as its last action, the function’s stack frame
can be reused. The is called tail recursion.
Rewrite the function as tail recursion.

def factorial(n: Int): Int = {

def loop(acc: Int, n: Int)=

if (n == 0) acc

else loop(n*acc, acc)

loop(0,n)

}

Angelo Gargantini Introduction to Functional Programming with Scala

Tail Calls and TCO

If a function calls itself as its last action, the function’s stack frame
can be reused. The is called tail recursion.
Rewrite the function as tail recursion.

def factorial(n: Int): Int = {

def loop(acc: Int, n: Int)=

if (n == 0) acc

else loop(n*acc, acc)

loop(0,n)

}

Angelo Gargantini Introduction to Functional Programming with Scala

Tail Calls and TCO

def sum(n: Int, acc: Int):Int =

if(n == 0) acc else sum(n - 1, acc + n)

val r = sum(10000, 0)

println(r)

This is a ”tail-recursive” version of the previous function - the
Scala compiler converts the tail call to a loop, thereby avoiding
stack overflow!

Angelo Gargantini Introduction to Functional Programming with Scala

Tail Calls and TCO

(sum 4)

(4 + sum 3)

(4 + (3 + sum 2))

(4 + (3 + (2 + sum 1)))

(4 + (3 + (2 + (1 + sum 0))))

(4 + (3 + (2 + (1 + 0))))

(4 + (3 + (2 + 0)))

(4 + (3 + 2))

(4 + 5)

(9)

(sum 4 0)

(sum 3 4)

(sum 2 7)

(sum 1 8)

(sum 0 9)

(9)

Angelo Gargantini Introduction to Functional Programming with Scala

Higher-Order Functions

Functional languages treat functions as first-class values

This means that, like any other value, a function can be
passed as a parameter and returned as a result

Functions that take values and variable are called first order
functions

Functions that take other functions as parameters or return
functions are called higher order functions

Angelo Gargantini Introduction to Functional Programming with Scala

Summation once again!

take the sum of the integers from a and b:

def sumInts(a: Int, b: Int) =

if (a > b) 0 else a + sumInts(a,b)

If you want to sum the squares or cubes from a and b:

def sqr(x: Int) = x * x

def sumSquares(a: Int, b: Int): Int =

if (a > b) 0 else sqr(a) + sumSquares(a + 1, b)

def cube(x: Int) = x * x * x

def sumCubes(a: Int, b: Int): Int =

if (a > b) 0 else cube(a) + sumCubes(a + 1, b)

Angelo Gargantini Introduction to Functional Programming with Scala

Summation once again!

take the sum of the integers from a and b:

def sumInts(a: Int, b: Int) =

if (a > b) 0 else a + sumInts(a,b)

If you want to sum the squares or cubes from a and b:

def sqr(x: Int) = x * x

def sumSquares(a: Int, b: Int): Int =

if (a > b) 0 else sqr(a) + sumSquares(a + 1, b)

def cube(x: Int) = x * x * x

def sumCubes(a: Int, b: Int): Int =

if (a > b) 0 else cube(a) + sumCubes(a + 1, b)

Angelo Gargantini Introduction to Functional Programming with Scala

Summation

Exercise

Define the sum of factorial from a and b

Idea

Define a sum generic with the respect to the operation applied to
each number?

def operation(x:Int) = ...

def sumOperation(a: Int, b: Int) =

if (a > b) 0 else operation(a) + sumOperation(a+1,b)

Angelo Gargantini Introduction to Functional Programming with Scala

Summation

Exercise

Define the sum of factorial from a and b

Idea

Define a sum generic with the respect to the operation applied to
each number?

def operation(x:Int) = ...

def sumOperation(a: Int, b: Int) =

if (a > b) 0 else operation(a) + sumOperation(a+1,b)

Angelo Gargantini Introduction to Functional Programming with Scala

Higher order functions

def sum(f: Int=>Int, a: Int, b: Int): Int =

if (a > b) 0 else f(a) + sum(f, a + 1, b)

”sum” is now a ”higher order” function! It’s first parameter is a
function which maps an Int to an Int

The type ”Int” represents a simple Integer value. The type Int =>

Int represents a function which accepts an Int and returns an Int.

def identity(x: Int) = x

def sqr(x: Int) = x * x

def cube(x: Int) = x * x * x

def fact(x:Int) = ...

println(sum(identity, 1, 10))

println(sum(sqr, 1, 10))

println(sum(cube, 1, 10))

Angelo Gargantini Introduction to Functional Programming with Scala

Higher order functions

def sum(f: Int=>Int, a: Int, b: Int): Int =

if (a > b) 0 else f(a) + sum(f, a + 1, b)

”sum” is now a ”higher order” function! It’s first parameter is a
function which maps an Int to an Int

The type ”Int” represents a simple Integer value. The type Int =>

Int represents a function which accepts an Int and returns an Int.

def identity(x: Int) = x

def sqr(x: Int) = x * x

def cube(x: Int) = x * x * x

def fact(x:Int) = ...

println(sum(identity, 1, 10))

println(sum(sqr, 1, 10))

println(sum(cube, 1, 10))

Angelo Gargantini Introduction to Functional Programming with Scala

Anonymous functions

Passing functions as parameters leads to the creation of many
functions. Sometime is tedious. It can be avoided.
Like:

def name = "Angelo"; println(name)

can be written as

println("Angelo)

we want to define functions without an explicit name:
anonymous functions

Angelo Gargantini Introduction to Functional Programming with Scala

Anonymous functions

Can be written as:
(Paramters) => Body

We can create ”anonymous” functions on-the-fly! x => x*x is a
function which takes an ”x” and returns x*x

(x:Int)=> x *x

The parameter type can be omitted if the compiler can infer it:

x => x *x

println(sum(x=>x, 1, 10))

println(sum(x=>x*x, 1, 10))

println(sum(x=>x*x*x, 1, 10))

Angelo Gargantini Introduction to Functional Programming with Scala

Higher order functions and recursive calls

Rewrite sum with the tail recursion?

def sum(f: Int => Int, a: Int, b: Int): Int = {

def loop(a: Int, acc: Int): Int = {

if (a > b) acc

else loop(a + 1, acc + f(a))

}

loop(a, 0)

}

Angelo Gargantini Introduction to Functional Programming with Scala

Higher order functions and recursive calls

Rewrite sum with the tail recursion?

def sum(f: Int => Int, a: Int, b: Int): Int = {

def loop(a: Int, acc: Int): Int = {

if (a > b) acc

else loop(a + 1, acc + f(a))

}

loop(a, 0)

}

Angelo Gargantini Introduction to Functional Programming with Scala

Currying

Here is the definition from Wikipedia:

In mathematics and computer science, currying is the technique of
transforming a function that takes multiple arguments (or a tuple
of arguments) in such a way that it can be called as a chain of
functions, each with a single argument. It was originated by Moses
Schonfinkel and later re-discovered by Haskell Curry.

Let’s try to do this in Scala!

Angelo Gargantini Introduction to Functional Programming with Scala

Currying - returning functions

def sumInts(a:Int, b: Int) = sum(x=>x, 1, 10)

def sumCubes(a:Int, b: Int) = sum(x=>x*x, 1, 10)

def sumFactorial(a:Int, b: Int) = sum(fact, 1, 10)

a and b are passed to sum unchanged. Can we rewrite sum and
aboid the use of a and b?

sum can return a function that takes two Ints and return an Int

def sum(f: Int => Int): (Int,Int) => Int = {

def sumF(a: Int, b: Int): Int = {

if (a > b) 0

else f(a) + sumF(a + 1, b)

}

sumF

}

Angelo Gargantini Introduction to Functional Programming with Scala

Currying - returning functions

def sumInts(a:Int, b: Int) = sum(x=>x, 1, 10)

def sumCubes(a:Int, b: Int) = sum(x=>x*x, 1, 10)

def sumFactorial(a:Int, b: Int) = sum(fact, 1, 10)

a and b are passed to sum unchanged. Can we rewrite sum and
aboid the use of a and b?
sum can return a function that takes two Ints and return an Int

def sum(f: Int => Int): (Int,Int) => Int = {

def sumF(a: Int, b: Int): Int = {

if (a > b) 0

else f(a) + sumF(a + 1, b)

}

sumF

}

Angelo Gargantini Introduction to Functional Programming with Scala

Currying - stepwise application

The basic sum functions can be defined without parameters:

def sumInts = sum(x=>x)

def sumCubes = sum(x=>x*x)

def sumFactorial = sum(fact)

sumInts(3,4) ...
or we could write

sum(x=>x)(3,4)

Angelo Gargantini Introduction to Functional Programming with Scala

Multiple parameter list

def sum(f: Int => Int, a: Int, b: Int): Int =

Can be rewritten as:

def sum(f: Int => Int) : (Int, Int) => Int =

or equivalently, by using multiple parameter lists:

def sum(f: Int => Int)(a: Int, b: Int): Int =

the advantage wrt the first is that se can pass only one argument
like sum(cube) the advantage wrt the second is that we can use a
and b directly in the body

Angelo Gargantini Introduction to Functional Programming with Scala

Currying - two argument functions

def addA(x: Int, y: Int): Int =

x + y

def addB(x: Int):Int=>Int =

y => x + y

val a = addA(10, 20)

val b = addB(10)(20)

println(a)

println(b)

Angelo Gargantini Introduction to Functional Programming with Scala

Currying - three argument functions

def addA(x: Int, y: Int, z: Int) = x + y + z

def addB(x: Int): Int => (Int => Int) =

y => (z => x + y + z)

val a = addA(1, 2, 3)

val b = addB(1)(2)(3)

println(a)

println(b)

It is now easy to see how the idea can be generalized to N
argument functions!

Angelo Gargantini Introduction to Functional Programming with Scala

Exercise

1 write a function that calculates the product of the values for
the points on a gievn interval

2 write a function that calculates the product of the values of a
function f for the points on a given interval

3 write the factorial in terms of product

4 can we write a more general function which generalize both
sum and product

Angelo Gargantini Introduction to Functional Programming with Scala

Exercise

1 write a function that calculates the product of the values for
the points on a gievn interval

2 write a function that calculates the product of the values of a
function f for the points on a given interval

3 write the factorial in terms of product

4 can we write a more general function which generalize both
sum and product

Angelo Gargantini Introduction to Functional Programming with Scala

END 1

Angelo Gargantini Introduction to Functional Programming with Scala

Methods on collections: Map/Filter/Reduce

val a = List(1,2,3,4,5,6,7)

val b = a.map(x => x * x)

val c = a.filter(x => x < 5)

val d = a.reduce((x, y)=>x+y)

println(b)

println(c)

println(d)

Map applies a function on all elements of a sequence. Filter selects
a set of values from a sequence based on the boolean value
returned by a function passed as its parameter - both functions
return a new sequence. Reduce combines the elements of a
sequence into a single element.

Angelo Gargantini Introduction to Functional Programming with Scala

More methods on collections

def even(x: Int) = (x % 2) == 0

val a = List(1,2,3,4,5,6,7)

val b = List(2, 4, 6, 5, 10, 11, 13, 12)

// are all members even?

println(a.forall(even))

// is there an even element in the sequence?

println(a.exists(even))

//take while the element is even -

//stop at the first odd element

println(b.takeWhile(even))

//partition into two sublists: even and odd

println(a.partition(even))
Angelo Gargantini Introduction to Functional Programming with Scala

Block structure / Scope

def fun(x: Int) = {

val y = 1

val r = {

val y = 2

x + y

}

println(r)

println(x + y)

}

fun(10)

The ”y” in the inner scope shadows the ”y” in the outer scope

Angelo Gargantini Introduction to Functional Programming with Scala

Nested functions / functions returning functions

// fun returns a function of type Int => Int

def fun():Int => Int = {

def sqr(x: Int):Int = x * x

sqr

}

val f = fun()

println(f(10))

def fun():Int=>Int says ”fun is a function which does not take
any argument and returns a function which maps an Int to an Int.
Note that it possible to have ”nested” function definitions.

Angelo Gargantini Introduction to Functional Programming with Scala

Lexical Closure

def fun1():Int => Int = {

val y = 1

def add(x: Int) = x + y

add

}

def fun2() = {

val y = 2

val f = fun1()

// what does it print? 11 or 12

println(f(10))

}

fun2()

What does it print? 10 or 12?

Angelo Gargantini Introduction to Functional Programming with Scala

Lexical Closure

The function ”fun1” returns a ”closure”.

A ”closure” is a function which carries with it references to
the environment in which it was defined.

When we call f(10), the ”add” function gets executed with
the environment it had when it was defined - in this
environment, the value of ”y” is 1.

Angelo Gargantini Introduction to Functional Programming with Scala

Lexical Closure with anonymous functions

def fun1(y: Int):Int=>Int =

x => x + y

def fun2() = {

val f = fun1(10)

println(f(2))

}

fun2()

”y” is now a parameter to fun1

”fun1” returns an anonymous function - there is absolutely no
difference between returning a ”named” function and
returning an anonymous function.

Angelo Gargantini Introduction to Functional Programming with Scala

Simple closure examples

def sqr(x: Int) = x*x

def cube(x: Int) = x*x*x

def compose(f: Int=>Int, g: Int=>Int): Int=>Int =

x => f(g(x))

val f = compose(sqr, cube)

println(f(2))

val a = List(1,2,3,4)

println(a.map(f))

println(a.map(cube).map(sqr))

Angelo Gargantini Introduction to Functional Programming with Scala

Simple closure examples

def removeLowScores(a: List[Int],

threshold: Int): List[Int] =

a.filter(score => score >= threshold)

val a = List(95, 87, 20, 45, 35, 66, 10, 15)

println(removeLowScores(a, 30))

The anonymous function "score => score >= threshold"

is the closure here.
How do you know that it is a closure? Its body uses a variable
”threshold” which is not in its local environment (the local
environment, in this case, is the parameter list consisting of a
single parameter ”score”)

Angelo Gargantini Introduction to Functional Programming with Scala

Some List operations

val a = List(1,2,3)

val b = Nil

val c = List()

val d = 0::a

val e = 0::b

println(b)

println(c)

println(d) // List(0,1,2,3)

println(e) // List(0)

Nil and List() are both ”empty” lists

a::b returns a new list with ”a” as the first item (the ”head”)
and remaining part b (called the ”tail”)

Angelo Gargantini Introduction to Functional Programming with Scala

Non-strict evaluation

def myIf(cond: Boolean, thenPart: Int, elsePart: Int) =

if (cond) thenPart else elsePart

println(myIf((1 < 2), 10, 20))

We are trying to write a function which behaves similar to the
built-in ”if” control structure in Scala ... does it really work
properly? Let’s try another example!

Angelo Gargantini Introduction to Functional Programming with Scala

Non-strict evaluation

def fun1() = {

println("fun1")

10

}

def fun2() = {

println("fun2")

20

}

def myIf(cond: Boolean, thenPart: Int, elsePart: Int) =

if (cond) thenPart else elsePart

println(myIf((1 < 2), fun1(), fun2()))

Angelo Gargantini Introduction to Functional Programming with Scala

Non-strict evaluation

The behaviour of ”if” is ”non-strict”: In the expression ”if
(cond) e1 else e2”, if ”cond” is true e2 is NOT EVALUATED.
Also, if ”cond” is false, e1 is NOT EVALUATED.

By default, the behaviour of function calls in Scala is ”strict”:
In the expression ”fun(e1, e2, ..., en), ALL the expressions e1,
e2 ... en are evaluated before the function is called.

There is a way by which we can make the evaluation of
function parameters non-strict. If we define a functions as
"def fun(e1: => Int)", the expression passed as a
parameter to ”fun” is evaluated ONLY when its value is
needed in the body of the function. This is the ”call-by-name”
method of parameter passing, which is a ”non-strict” strategy.

Angelo Gargantini Introduction to Functional Programming with Scala

Non-strict evaluation

def fun1() = {

println("fun1")

10

}

def fun2() = {

println("fun2")

20

}

def myIf(cond: Boolean, thenPart: => Int,

elsePart: => Int) =

if (cond) thenPart else elsePart

println(myIf((1 < 2), fun1(), fun2()))

Angelo Gargantini Introduction to Functional Programming with Scala

Non-strict evaluation

def hello() = {

println("hello")

10

}

def fun(x: => Int) = {

x + x

}

val t = fun(hello())

println(t)

How many times is the message ”hello” printed? Is there some
way to prevent unnecessary repeated evaluations?

Angelo Gargantini Introduction to Functional Programming with Scala

Lazy val’s

def hello() = {

println("hello")

10

}

val a = hello()

The program prints ”hello” once, as expected. The value of the val
”a” will be 10.

Angelo Gargantini Introduction to Functional Programming with Scala

Lazy val’s

def hello() = {

println("hello")

10

}

lazy val a = hello()

Strange, the program does NOT print ”hello”! Why? The
expression which assigns a value to a ”lazy” val is executed only
when that lazy val is used somewhere in the code!

Angelo Gargantini Introduction to Functional Programming with Scala

Lazy val’s

def hello() = {

println("hello")

10

}

lazy val a = hello()

println(a + a)

Unlike a ”call-by-name” parameter, a lazy val is evaluated only
once and the value is stored! This is called ”lazy” or ”call by
need” evaluation.

Angelo Gargantini Introduction to Functional Programming with Scala

Referential Transparency

If an expression can be replaced by its value without changing the
behaviour of the program, it is said to be referentially transparent

All occurrences of the expression 1+(2*3) can be replaced by
7 without changing the behaviour of the program.

Say the variable x (in a C program) has initial value 5. It is
NOT possible to replace all occurrences of the statement (x =
x + 1) with the value 6.

Angelo Gargantini Introduction to Functional Programming with Scala

Pure Functions

var balance = 1000

def withdraw(amount: Int) = {

balance = balance - amount

balance

}

println(withdraw(100))

println(withdraw(100))

In what way is our ”withdraw” function different from a function
like ”sin”?

Angelo Gargantini Introduction to Functional Programming with Scala

Pure Functions

A pure function always computes the same value given the
same parameters; for example, sin(0) is always 0. It is
”Referentially Transparent”.

Evaluation of a pure function does not cause any observable
”side effects” or output - like mutation of global variables or
output to I/O devices.

Angelo Gargantini Introduction to Functional Programming with Scala

What is Functional Programming?

A style of programming which emphasizes composing your program
out of PURE functions and immutable data.

Theoretical foundation based on Alonzo Church’s Lambda Calculus

In order for this style to be effective in the construction of real
world programs, we make use of most of the ideas seen so far
(higher order functions, lexical closures, currying, immutable and
persistent datastructures, lazy evaluation etc)

Angelo Gargantini Introduction to Functional Programming with Scala

What is Functional Programming?

Questions to ask:

Is this the ”silver bullet”?

How practical is a program composed completely out of
”pure” functions?

What are the benefits of writing in a functional style?

Angelo Gargantini Introduction to Functional Programming with Scala

Is FP the silver bullet?

Of course, there are NO silver bullets!
(http://en.wikipedia.org/wiki/No_Silver_Bullet)

Writing software is tough - no one methodology or technique
is going to solve all your problems

Angelo Gargantini Introduction to Functional Programming with Scala

http://en.wikipedia.org/wiki/No_Silver_Bullet

How practical is a program composed completely out of
pure functions?

Very impractical - unless your aim is to fight the chill by
heating up the CPU (which, by the way, is a ”side effect”)

The idea is to write your program in such a way that it has a
purely functional core, surrounded by a few ”impure”
functions at the outer layers

Angelo Gargantini Introduction to Functional Programming with Scala

Functional core + ”impure” outer layers

This example is simple and contrived, but it serves to illustrate the
idea. It is taken from the amazing book ”Functional Programming
in Scala” by Paul Chiusano and Runar Bjarnason.

case class Player(name: String, score: Int)

def declareWinner(p: Player) =

println(p.name + " is the winner!! ")

def winner(p1: Player, p2: Player) =

if(p1.score > p2.score) declareWinner(p1)

else declareWinner(p2)

winner(Player("Ram", 10), Player("John", 20))

Note that ”winner” is an impure function. We will now refactor it
a little!

Angelo Gargantini Introduction to Functional Programming with Scala

Functional core + ”impure” outer layers

case class Player(name: String, score: Int)

def declareWinner(p: Player) =

println(p.name + " is the winner!! ")

def maxScore(p1: Player, p2: Player) =

if (p1.score > p2.score) p1 else p2

def winner(p1: Player, p2: Player) =

declareWinner(maxScore(p1, p2))

winner(Player("Ram", 10), Player("John", 20))

Now we have separated the computation from the display logic;
”maxScore” is a pure function and ”winner” is the impure function
at the ”outer” layer!

Angelo Gargantini Introduction to Functional Programming with Scala

Benefits of functional style - easy reuse, easy testing

What if we wish to find out the winner among a set of N players?
Easy!

val players = List(Player("Ram", 10),

Player("John", 15),

Player("Hari", 20),

Player("Krishna", 17))

println(players.reduceLeft(maxScore))

Angelo Gargantini Introduction to Functional Programming with Scala

FP as ”good software engineering”

Pure functions are easy to re-use as they have no ”context”
other than the function parameters. (Think about re-using
the ”winner” function in our first version to compute the
winner among N players).

Pure functions are also easy to test. (Think about writing an
automated test for the ”winner” function in the first version).

Think of FP as ”Good Software Engineering”!

Angelo Gargantini Introduction to Functional Programming with Scala

Pure functions and the benefit of ”local reasoning”

If your function modifies an object which is accessible from
many other functions, the effect of calling the function is
much more complex to analyse because you now have to
analyse how all these other functions get affected by the
mutation.

Similarly, if the value computed by your function depends on
the value of an object which can be modified by many other
functions, it no longer becomes possible to reason about the
working of the function by only looking at the way the
function’s parameters are manipulated.

The evaluation of pure functions can be done by a very simple
process of ”substitution”.

Angelo Gargantini Introduction to Functional Programming with Scala

Why mutability is tricky - an example

class ProtectedResource {

private Resource theResource = ...;

private String [] allowedUsers = ...;

public String[] getAllowedUsers() {

return allowedUsers;

}

public String currentUser() { ... }

public void useTheResource() {

for(int i = 0; i < allowedUsers.length; i++) {

if(currentUser().equals(allowedUsers[i]) {

... // access allowed; use it!

}

}

throw new IllegalAccessException();

}

}

Angelo Gargantini Introduction to Functional Programming with Scala

Why mutability is tricky - an example

This Java example is taken from Prof.Dan Grossman’s (University
of Washington) excellent coursera.org class on ”Programming
Languages”. Can you identify the problem with the code?

Angelo Gargantini Introduction to Functional Programming with Scala

Why mutability is tricky - an example

What if client code does this?

p.getAllowedUsers[0] = p.currentUser()

p.useTheResource()

The user can happily use the resource, even if he does not belong
to the group of ”allowed” users! The fix is to return a copy of
”allowedUsers” in the function ”getAllowedUsers”.

What if we had used an immutable Scala list for representing
”allowedUsers”? This problem would never had occurred because
an attempt to modify ”allowedUsers” simply returns a new object
without in any way altering the original!

Angelo Gargantini Introduction to Functional Programming with Scala

How it gets even more tricky in the context of concurrency

Multi core CPU’s are becoming commonplace

We need concurrency in our code to make effective use of the
many cores

This throws up a whole bunch of complex problems

A function can no longer assume that nobody else is watching
when it is happily mutating some data

Angelo Gargantini Introduction to Functional Programming with Scala

How it gets even more tricky in the context of concurrency

case class Date(var year: Int, var month: String,

var date: Int, var weekDay: String)

val d = Date(2013, "February", 23, "Saturday")

def changeDate(year: Int, month:String,

date: Int, weekDay: String) = {

d.year = year

d.month = month

d.date = date

d.weekDay = weekDay

}

def showDate() = println(d)

changeDate(2013, "February", 24, "Sunday")

showDate()

Angelo Gargantini Introduction to Functional Programming with Scala

How it gets even more tricky in the context of concurrency

What happens if the functions changeDate() and showDate() run
as two independent threads on two CPU cores? Will showDate()
always see a consistent date value?

The traditional approach to maintaining correctness in the context
of multithreading is to use locks - but people who do it in practice
will tell you it is extremely tricky business.

It is claimed that one of the reasons for the resurgence of FP is the
emergence of multi-core processors and concurrency - it seems like
FP’s emphasis on pure functions and immutability is a good match
for concurrent programming.

Angelo Gargantini Introduction to Functional Programming with Scala

Moving ahead ...

Join Prof.Grossman’s programming languages class on
Coursera: https://www.coursera.org/course/proglang

and learn more about functional programming using SML and
Racket

Join Prof.Odersky’s Functional Programming with Scala
course on Coursera for an introduction to both Scala and FP:
https://www.coursera.org/course/progfun

Watch the classic ”SICP” lectures by Abelson and Sussman:
http://groups.csail.mit.edu/mac/classes/6.001/

abelson-sussman-lectures/

Learn from ”HTDP” if you want something simpler:
http://htdp.org/

Angelo Gargantini Introduction to Functional Programming with Scala

https://www.coursera.org/course/proglang
https://www.coursera.org/course/progfun
http://groups.csail.mit.edu/mac/classes/6.001/abelson-sussman-lectures/
http://groups.csail.mit.edu/mac/classes/6.001/abelson-sussman-lectures/
http://htdp.org/

Books

”Programming in Scala, 2nd edition” by Martin Odersky, Bill
Venners, Lex Spoon. Perhaps the best introductory book on
the language.

”Functional Programming in Scala” by Paul Chiusano and
Runar Bjarnson - this will soon become a classic!

”Scala in Depth” by Joshua Suereth. This is an advanced
book on Scala

”Learn You a Haskell for Great Good” -
http://learnyouahaskell.com/. Scala programmers can
definitely benefit from an understanding of Haskell - this is an
amazing book which will get you started with Haskell.

Many others: check out http://blog.typesafe.com/
week-of-scala-with-manning-publications

Angelo Gargantini Introduction to Functional Programming with Scala

http://learnyouahaskell.com/
http://blog.typesafe.com/week-of-scala-with-manning-publications
http://blog.typesafe.com/week-of-scala-with-manning-publications

Other resources

”Learning functional programming without growing a
neckbeard” - http://marakana.com/s/post/1354/
learning_functional_programming_scala_video

”Scala Days 2012” Videos - http:
//skillsmatter.com/event/scala/scala-days-2012

”Out of the tar pit” - paper by Ben Mosely and Peter Marks
(google it)

”Persistent Data Structures and Managed References” - talk
by Rich Hickey (author of the Clojure programming language).
http://www.infoq.com/presentations/

Value-Identity-State-Rich-Hickey

”Can programming be liberated from the von Neumann style”
- by John Backus. http://www.thocp.net/biographies/

papers/backus_turingaward_lecture.pdf

Angelo Gargantini Introduction to Functional Programming with Scala

http://marakana.com/s/post/1354/learning_functional_programming_scala_video
http://marakana.com/s/post/1354/learning_functional_programming_scala_video
http://skillsmatter.com/event/scala/scala-days-2012
http://skillsmatter.com/event/scala/scala-days-2012
http://www.infoq.com/presentations/Value-Identity-State-Rich-Hickey
http://www.infoq.com/presentations/Value-Identity-State-Rich-Hickey
http://www.thocp.net/biographies/papers/backus_turingaward_lecture.pdf
http://www.thocp.net/biographies/papers/backus_turingaward_lecture.pdf

