The ATM case study

In AsmetalL

ATM (Cash machine) (Egon Boerger and Robert Staerk. Abstract
State Machines: A Method for High-Level System Design and Analysis.

Springer, March 11, 2003) : The Problem

Design the control for an ATM, where via a GUI
the customer can perform the following
operations:

°*Opl. Enter the ID (the PIN number). Only one
attempt is allowed per session; upon failure the card
Is withdrawn.,

*Op2. Ask for the balance of the account. This
operation is allowed only once and only before
attempting to withdraw money.

*Op3. Withdraw money from the account. Only one
attempt is allowed per session. A warning is issued if
the amount required exceeds the balance of the
account.

ATM - other requirements

Acc. The central system is supposed to be designed
separately.

* |t receives the information about every withdrawal
and updates the account balance correspondingly.

* The ATM becomes inaccessible for the customer for
any other transaction until this update has become
effective.

Ref. Extend the ATM to go out-of-service when not
enough money is left.

ATM use case description

enter

EnterAmount amalirlt/ - 4 ChooseOtherAmount T — L
SelectAmount SEIEﬂ\,—-— EnterStandardAmount /Eﬁmsh
amnl_.ljft/ "\EH‘IGUI‘IT/
Enter\WVrongPin T
ChooseWithdrawal
/L 1 T /‘ it
: i choose
T i InsertCard av{auh_ EnterGoodPin —» mnne\

Ry ;:aﬂi/ i / \ Gatanbe

GoQutOfService EnterBalance

/ff—ia\ fﬁf Caso d’'uso
out of O (stato ATM)
Qerwi:y

S evento

ASM signature
Domains:

abstract domain NumCard

enum domain State =

{ AWAITCARD | AWAITPIN | CHOOSE | OUTOFSERVICE |
CHOOSEAMOUNT | STANDARDAMOUNTSELECTION |
OTHERAMOUNTSELECTION?}

States of the ATM

enum domain Service = {BALANCE | WITHDRAWAL |
EXIT}
The customer can: ask for the balance or withdraw money
or exit

- domain MoneySize subsetof Integer
e.qg. = {10, 20, 40, 50, 100, 150, 200}

- enum domain MoneySizeSelection = {STANDARD |
OTHER}

Functions ASM signature

* dynamic controlled currCard: NumCard

the currently inserted card

* dynamic controlled atmState: State

records the state of the ATM

* dynamic controlled outMess: Any

an output function whose values abstractly represent the
messages to be displayed on the screen

* static pin: NumCard -> Integer the PIN of a card

* dynamic controlled balance: NumCard -> Integer

the account’s balance

* dynamic controlled accessible: NumCard -> Boolean
Indicates whether or not a previous customer ATM
operation is still pending in the central system. By setting
accessible(CurrCard) to false (see the rule guards for
entering a pin number) prevent further transactions until
the central system changes the accessibility back to true.

ASM signature
Other functions

* dynamic monitored insertedCard: NumCard

Inserted card

* dynamic monitored insertedPin: Integer

inserted PIN

* dynamic monitored selectedService: Service
selected service

* dynamic monitored standardOrOther: MoneySizeSelection
selected money size: STANDARD or OTHER

* dynamic monitored insertMoneySize: Integer
selected money size (in case of OTHER)

* dynamic controlled moneyleft: Integer

ATM cash

* derived allowed: Prod(NumCard, Integer) -> Boolean
withdrawal iff the balance is >= to the requested money

function allowed($c in NumCard, $m in Integer) =
balance($c) >= $m

ASM transition rules
Insert a card:

By requirement Op1l, the insertion of a card (preceding
entering an ID) can be formalized as follows

rule r_insertcard =
if (atmState=AWAITCARD) then

par
currCard := insertedCard
atmState := AWAITPIN
outMess := "Enter pin"
endpar

endif

ASM transition rules

Enter the PIN: By Op1l the inserted PIN must be correct and by the
requirement Acc, access should be granted only if the account of
the current card is accessible

rule r_enterPin =
if (atmState=AWAITPIN) then
if (insertedPin=pin(currCard) and accessible(currCard))

then par
outMess := "Choose service"
atmState := CHOOSE
endpar

else //wrong PIN or account inaccesible: the card is returned

//by setting atmState := AWAITCARD

par
atmState := AWAITCARD

if (insertedPin!=pin(currCard))

then outMess := "Wrong pin” endif
if (not(accessible(currCard)) and insertedPin=pin(currCard))
then outMess := "Account non accessible” endif

endpar

endif
endif

ASM transition rules
Choose service:

By Op2 and Op3: ask for balance, or for money, or exit

rule r_chooseService =
if (atmState=CHOOSE)
then par
if (selectedService=BALANCE) //display the balance
then outMess := balance(currCard) endif
if (selectedService=WITHDRAWAL)

then par
atmState := CHOOSEAMOUNT // standard or other
outMess := "Choose Standard or Other"

endpar endif

if (selectedService=EXIT)

then par
atmState := AWAITCARD // choice: EXIT
outMess := "Goodbye"

endpar endif
endpar
endif

ASM transition rules
Choose amount: By Op3

rule r chooseAmount =
if (atmState=CHOOSEAMOUNT) then

par
if (standardOrOther=STANDARD) then
par
atmState := STANDARDAMOUNTSELECTION
outMess := "Select a money size"
endpar
endif
if (standardOrOther=0THER) then
par
atmState := OTHERAMOUNTSELECTION
outMess := "Enter money size"
endpar
endif
endpar

endif

Withdraw money: By Op3 ASM transition rules

rule r withdraw =
par
if (atmState=STANDARDAMOUNTSELECTION)
then if (exist $m in MoneySize with $m=insertMoneySize)
then if (insertMoneySize<=moneyLeft)
then r processMoneyRequest [insertMoneySize]
else outMess := “No enough cash in the ATM"
endif
endif

endif
iIf (atmState=0OTHERAMOUNTSELECTION)

then if (mod(insertMoneySize, 10)=0)
then if (insertMoneySize<=moneyLlLeft)
then r processMoneyRequest [insertMoneySize]

else outMess := " No enough cash in the ATM "
endif

else outMess := “Money size not available"

endif

endif
endpar

ASM transition rules
Process money request: By Op3

rule r processMoneyRequest ($m in Integer) =
if (allowed(currCard, $m))
then r grantMoney[$m]
else outMess := "Not enough money in your account"

endif

ASM transition rules
Grant money: By Op3

rule r_grantMoney($m in Integer) =
par
r subtractFrom[currCard, $m] //update the account balance
moneylLeft := moneyLeft - insertMoneySize //ATM cash decreases
seq
accessible(currCard) := false //set the account inaccessible
accessible(currCard) := true //Another agent should unblock
//the account! Cosi inutile
endseq
atmState := AWAITCARD //the card is returned to the customer
outMess := "Goodbye"
endpar

rule r subtractFrom ($c in NumCard, $m in Integer) =
balance($c) := balance($c) - $m

ASM transition rules
Go out of service: By ref.

macro rule r goOutOfService =
if (moneylLeft < minMoney) then

par
atmState := OUTOFSERVICE
outMess := "Out of Service"
endpar

endif

where (a new function is added to the signature):

static minMoney: Integer
Minimum amount of money to permit the ATM to work

ASM transition rules
Main rule:

main rule r Main =
seq
r_ goOutOfServicel]
par
r_insertcard[]
r_enterPin[]
r_ chooseService[]
r chooseAmount|]
r_prelievol]
endpar
endseq

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 17

