

Objects in C++
 Objects, with dynamic lookup of

virtual functions

C++ Object System

 Object-oriented features
1.Classes and Data Abstraction
2.Encapsulation
3.Inheritance

1.Single and multiple inheritance
2.Public and private base classes

4.Objects, with dynamic lookup of virtual functions
5.Subtyping

1.Tied to inheritance mechanism

Polymorphism in C++

 Runtime polymorphism
Virtual functions

 Compile-time polymorfism
 (parametric polymorfism)

 templates

Run-time Polymorphism

 Run-time polymorphism: implemented with
dynamic lookup of virtual functions

 Dynamic lookup: a method is selected
dynamically, at run time, according to the
implementation of the object that receives a
message
 not some static property of the pointer or variable

used to name the object

 The important property of dynamic lookup is that
different objects may implement the same
operation differently

 Virtual functions

Member functions are either
Virtual, if explicitly declared or inherited as virtual

Non-virtual otherwise

 Virtual members
Are accessed by indirection through ptr in object

May be overridden in derived (sub) classes

 Non-virtual functions
Are called in the usual way. Just ordinary

functions.

May be redefined in derived classes (overloading
through redefining)

 Pay overhead only if you use virtual functions

Sample class: one-dimen.
points

class Pt {
 public:
 Pt(int xv);
 Pt(Pt* pv);
 int getX();
 virtual void move(int dx);
 protected:
 void setX(int xv);
 private:
 int x;
 };

Overloaded constructor

Public read access to private data

Virtual function

Protected write access

Private member data

Sample derived class

class ColorPt: public Pt {
 public:
 ColorPt(int xv,int cv);
 ColorPt(Pt* pv,int cv);
 ColorPt(ColorPt* cp);
 int getColor();
 virtual void move(int dx);
 virtual void darken(int tint);
 protected:
 void setColor(int cv);
 private:
 int color;
 };

Overloaded constructor

Non-virtual function

Virtual functions

Protected write access

Private member data

Sample derived class

/* ----Definitions of Member Functions --------*/

void ColorPt::darken(int tint) { color += tint; }

void ColorPt::move(int dx) {
Pt::move(dx); this->darken(1);
}

Virtual functions and indirection (1)

 C++ allows a base class pointer to point
to a derived class object

 Upon method invocation, the method of
the derived object is called

 This leads to generic alghoritms using
base class pointers

Pt* ptr = new ColorPt;

ptr->move();

delete(ptr);

Virtual functions and indirection (2)

BaseClass f()

D1 f()

D2 f() doesn’t
exist

D3 f() doesn’t
exist

obj

Run-time representation

3

5

blue

Point object

ColorPoint object

x

vptr

x

vptr

c

Point vtable

ColorPoint
vtable

Code for
move

Code for
move

Code for
darken

Virtual pointers Virtual tables Function code

Compare to Smalltalk

2

3

x

y newX:Y:

...

move

Point object Point class Template
Method dictionary

...

4

5

x

y newX:Y:C:

color

move

ColorPoint
object

ColorPoint class Template
Method dictionary

red

color

Why is C++ lookup simpler?

 Smalltalk has no static type system
Code p message:pars could refer to any object

Need to find method using pointer from object

Different classes will put methods at different
place in method dictionary

 C++ type gives compiler some superclass
Offset of data, fctn ptr same in subclass and

superclass

Offset of data and function ptr known at compile
time

Code p->move(x) compiles to equivalent of

 (*(p->vptr[1]))(p,x) if move is first fctn in
vtable.

data passed to member function; see next slide

Calls to virtual functions

One member function may call another
class A {
 public:
 virtual int f (int x);
 virtual int g(int y);
};
int A::f(int x) { … g(i) …;}
int A::g(int y) { … f(j) …;}

How does body of f call the right g?
 If g is redefined in derived class B, then

inherited f must call B::g

“This” pointer

 Code is compiled so that member function
takes “object itself” as first argument
 Code int A::f(int x) { … g(i) …;}

 compiled as int A::f(A *this, int x) { … this->g(i)
…;}

 “this” pointer may be used in member
function
Can be used to return pointer to object itself,

pass pointer to object itself to another
function, ...

Non-virtual functions

 How is code for non-virtual function found?

 Same way as ordinary “non-member” functions:

Compiler generates function code and assigns
address

Address of code is placed in symbol table

At call site, address is taken from symbol table
and placed in compiled code

But some special scoping rules for classes

 Overloading

Remember: overloading is resolved at compile
time

 This is different from run-time lookup of virtual
function

Scope rules in C++

 Scope qualifiers
 binary :: operator, ->, and .

 class::member, ptr->member, object.member

 A name outside a function or class,
 not prefixed by unary :: and not qualified

refers to global object, function, enumerator or
type.

 A name after X::, ptr-> or obj.
where we assume ptr is pointer to class X and

obj is an object of class X

 refers to a member of class X or a base class
of X

Virtual vs Overloaded
Functions

class parent { public:

 void printclass() {printf("p ");};

 virtual void printvirtual() {printf("p ");}; };

class child : public parent { public:

 void printclass() {printf("c ");};

 virtual void printvirtual() {printf("c ");}; };

main() {

 parent p; child c; parent *q;

 p.printclass(); p.printvirtual(); c.printclass(); c.printvirtual();

 q = &p; q->printclass(); q->printvirtual();

 q = &c; q->printclass(); q->printvirtual();

}

Output: p p c c p p p c

Function call binding

 Early binding (C,C++)
At compile time

 Late binding (C++)
At runtime

Mighty. But less effficient
1 more assembler statement per call

Slight memory consuption due to the VPTRs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

