Objects In C++

2.Encapsulation

3.Inheritance
1.Single and multiple inheritance
2.Public and private base classes

4.0bjects, with dynamic lookup of virtual functions
5.Subtyping

1.Tied to inheritance mechanism

o
K
o =4

Virtual function

B Compile-time polymorfism
B (parametric polymorfism)
B templates

' ﬁ(u’p”d‘f v’i’rtUaf 'fu rfctiénﬁ‘ ‘“‘“ e
u Dynam:c lookup: a method is selected
dynamically, at run time, according to the
Implementation of the object that receives a
message

B not some static property of the pointer or variable
used to name the object

B The important property of dynamic lookup is that
different objects may Iimplement the same
operation differently

St

|'

. V|rtual |f epr|C|tIy declared or |nher|ted as V|rtual
B Non-virtual otherwise
B Virtual members
B Are accessed by indirection through ptr in object

B May be overridden in derived (sub) classes

B Non-virtual functions

B Are called in the usual way. Just ordinary
functions.

B May be redefined in derived classes (overloading
through redefining)

B Pay overhead only if you use virtual functions

Sample ClaSS' one—dimen

uﬁ_tru- s-m ‘“h.: ik w,tw L
! Eﬂn I‘.'Si»ﬂ-fgi?f ﬂj;'ﬁ
‘*“"*I#* -"?r‘-t.-h-,.

Pt(int xv); } Overloaded constructor
Pt(Pt* pv);

int getX(); Public read access to private data
virtual void move(int dx); Virtual function
protected:
void setX(int xv): Protected write access
private:
Int x: Private member data

};

ColorPt(int xv,int cv);
ColorPt(Pt* pv,int cv); [Overloaded constructor
ColorPt(ColorPt* cp);)
int getColor(); Non-virtual function
virtual void move(int dx);

virtual void darken(int tint);

} Virtual functions

protected:

void setColor(int cv); Protected write access
private:

int color; Private member data

};

void ColorPt::darken(int tint) { color += tint; }

void ColorPt::move(int dx) {
Pt::move(dx); this->darken(1);
}

B Upon method invocation, the method of
the derived object is called

B This leads to generic alghoritms using
base class pointers

Pt* ptr = new ColorPt;
ptr->move();

delete(ptr);

2

g

L £
i B -i.':_;sﬂ:j_
ik -EI"‘;'.'-
i

e

0 Fapr o

I
D2 f() doesn’t
e|><ist
> D3 f() doesn’t
exist

[
>

ColorPoint object ColorPoint Code for

vta m
X
C Code for

Virtual pointers Virtual tables Function code

Method dictionary

ColorPoint class Template

ColorPoint
objec

éodz p messagé pars could refer tcS ah§/ dbject

B Need to find method using pointer from object

B Different classes will put methods at different
place in method dictionary

B C++ type gives compiler some superclass

B Offset of data, fctn ptr same in subclass and
superclass

B Offset of data and function ptr known at compile
time

B Code p->moveg(x) compiles to equivalent of
(*(p-=>vptr[Yara(passedtamemeerguficsdnf cER riext sli

I I P

class A

public:
virtual int f (int x);
virtual int g(inty);

&
int A::f(int x) { ... g(i) ...;}
int A::g(inty) { ... f(j) ...;}

B How does body of f call the right g?

B |f g is redefined in derived class B, then
Inherited f must call B::g

_I

takes objlc |tself as flt'arumnt

Code int A::f(int x) { ... g(i) ...;}
compiled as int A:f(A *this, int x) { ... this->g(i)
o}

B “this” pointer may be used in member
function
B Can be used to return pointer to object itself,

pass pointer to object itself to another
function,

CRi '1,;;..- g Sy ;_.‘-' ,;;.l.. 1 % _- : a:.-_ i P 3 e
Same way as ordlnary non member functlons:
B Compiler generates function code and assigns
address

B Address of code is placed in symbol table

B At call site, address is taken from symbol table
and placed in compiled code

B Syt some special scoping rules for classes
B Qverloading
B Remember: overloading is resolved at compile
time
B This is different from run-time lookup of virtual
function

.: operator, ->, and .
B class::member, ptr->member, object.member

B A name outside a function or class,

and not qualified

B not prefixed by unary ::

refers to global object, function, enumerator or

type.
B A name after X::, ptr

> Oor obj.

B where we assume ptr is pointer to class X and

obj is an object of class X
B refers to a member of class X or a base class

of X

V|rtual vs Overloaded

virtual void prmtwrtual() {printf("p ") } };
class child : public parent { public:

void printclass() {printf("c ");};

virtual void printvirtual() {printf("c ");}; };
main() {

parent p; child c; parent *q;

p.printclass(); p.printvirtual(); c.printclass(); c.printvirtual();

q = &p; g->printclass(); g->printvirtual();

g = &c; g->printclass(); g->printvirtual();
}

OQutput: ppccpppocC

P

lAt complletlme

B | ate binding (C++)
B At runtime

B Mighty. But less effficient
B] more assembler statement per call
B Slight memory consuption due to the VPTRs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

