

Objects in C++
 Inheritance

C++ Object System

 Object-oriented features
1.Classes and Data Abstraction
2.Encapsulation
3.Inheritance

 Single and multiple inheritance

 Public and private base classes

4.Objects, with dynamic lookup of virtual
functions

5.Subtyping
 Tied to inheritance mechanism

Inheritance (1)
The ability to reuse the definition of one kind of

object to define another kind of object.

Class hierarchies

Constructors/destructors
and inheritance (1)

Constructors/destructors
and inheritance (2)

Public, private, protected
inheritance

class CD: public CB{…}

class CD: private CB{…} or class CD: CB{…}

class CD: protected CB{…}

Private inheritance –publicize members

class CBase {
 int x;
public:
 int y;
 voif f();
 void f(int);
};
class CDerivata: Cbase{ // private inheritance
public:
 CBase::y; // y is turned in pubblic
 CBase::x; // ERROR. Not allowed!! x is private
 CBase::f; // Both overloaded members exposed
};

 Thus, private inheritance is useful if you want to
hide part of the functionality of the base class.

 In the presence of private inheritance, a subclass in
not a subtype

Multiple inheritance

However, multiple inheritance
introduces a number of possibilities for

ambiguity!

Redefining (1)
class X {
 int i;
 public:
 X() { i = 0; }
 void set(int ii) { i = ii; }
 int permute() { return i = i * 47; }
};

class Y : public X {
 int i; // Different from X's i
 public:
 Y() { i = 0; }
 int change() {
 i = permute(); // Different name call
 return i;
 }

 void set(int ii) { // redefining
 i = ii;
 X::set(ii); // Same-name function call
 }
};

Redefining (2)

 Redefining for ordinary member functions and
overriding when the base class member function
is a virtual function

 Redefining produces an overloaded function,

with code selection done at compile time
through the operator class_name::

 Virtual functions are the normal case and will be
covered in detail later

 Polymorphism is implemented in C++ with the
dynamic lookup of virtual functions

Redefining (3)

#include <iostream>
class A{
 int i;
 public:
 A(): i(1){};
 int f(){ return i;}
};
class B: public A{
 int i;
 public:
 B():i(2){};
 void f(int s){i = s;} //REDEFINING
 int g(){
 // return f(); ERROR
 return A::f(); //OK
 }
};

Multiple inhertitrance

 You can derive a class from any number of
base classes. Deriving a class from more
than one direct base class is called multiple
inheritance.
class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class X : public A, private B, public C { /* ... */ };

Some problems

 a derived class can inherit an indirect base
class more than once

class L { /* ... */ }; // indirect base class
class B2 : public L { /* ... */ };
class B3 : public L { /* ... */ };
class D : public B2, public B3 { /* ... */ }; // valid

Resolving the name

class D inherits the indirect base class L once
through class B2 and once through class B3.
ambiguities because two subobjects of class L exist,
and both are accessible through class D.

 You can avoid this ambiguity by referring to
class L using a qualified class name. For
example:

B2::L
or
B3::L.
You can also avoid this ambiguity by using the
base specifier virtual to declare a base class,

diamond

Suppose you have two derived classes B1
and B2 that have a common base class L,
and you also have another class D that
inherits from B1 and B2. You can declare the
base class L as virtual to ensure that B1 and
B2 share the same subobject of A.

class L { /* ... */ }; // indirect base class
class B1 : virtual public L { /* ... */ };
class B2 : virtual public L { /* ... */ };
class D : public B1, public B2 { /* ... */ }; //
valid

Multiple Inheritance

Inherit independent functionality from independent
classes

Shape Colored

Colored

Rectangle

Rectangle
mov

e

setColor

mov
esetColor

class CR : public R, public C { … };

Problem: Name Clashes

class A {
 public:
 void virtual f() { … }
};
class B {
 public:
 void virtual f() { … }
};
class C : public A, public B { … };
…
 C* p;
 p->f(); // error

 same name
in 2 base
classes

Possible solutions to name
clash

 Three general approaches
 Implicit resolution

 Language resolves name conflicts with arbitrary rule

 Explicit resolution
 Programmer must explicitly resolve name conflicts

 Disallow name clashes
 Programs are not allowed to contain name clashes

No solution is always best

 C++ uses explicit resolution by using fully
qualified names

Repair to previous example

 Rewrite class C to call A::f explicitly
class C : public A, public B {
 public:
 void virtual f() {
 A::f(); // Call A::f(), not B::f();
 }

 Reasonable solution
 This eliminates ambiguity
 Preserves dependence on A

 Changes to A::f will change C::f

vtable for Multiple
Inheritance

class A {
 public:
 int x;
 virtual void f();
};
class B {
 public:
 int y;
 virtual void g();
 virtual void f();
};

class C: public A, public B
{

 public:
 int z;
 virtual void f();
};

 C *pc = new C;
 B *pb = pc;
 A *pa = pc;

Three pointers to same
object, but different static
types.

Object and classes

 Offset δ in vtbl is used in call to pb->f, since C::f
may refer to A data that is above the pointer pb

 Call to pc->g can proceed through C-as-B vtbl

C object

C

A B

vptr

B data

vptr

A data

C data

B object

A object
& C::f 0

C-as-A vtbl

C-as-B vtbl

& B::g 0

& C::f δ

δ
pa, pc

pb

Multiple Inheritance
“Diamond”

 The implementation is inherited twice

 C objects consist of two windows, one capable of
displaying text and the other capable of displaying
graphics!

Window (D)

Text Window (A) Graphics Window (B)

Text, Graphics

Window (C)

The diamond inheritance Problem: an interesting kind of
name clash

D DA B

Obj C

A solution: virtual base
classes

 C++ has a mechanism for eliminating
multiple copies of duplicated base-class
members,

 called virtual base classes and consists
in declaring D as virtual base class of A
and B

C

A B

Dclass A : public virtual D
{ … }

class B : public virtual D
{ … }

DA B

Obj C

Diamond inheritance in C++

 Standard base classes
 D members appear twice in C

 Virtual base classes

 class A : public virtual D { … }
 Avoid duplication of base class members
 Require additional pointers so that D part of A,

B parts of object can be shared

C

A B

D

 C++ multiple inheritance is complicated in part
because of desire to maintain efficient lookup

 Virtual base classes give rise to other type conversion
problems

A part

D part

C part

B part

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

