

Objects in C++
 Classes and Data Abstraction

C++ Object System

 Object-oriented features
1.Classes and Data Abstraction
2.Encapsulation
3.Inheritance

 Single and multiple inheritance

 Public and private base classes

 Objects, with dynamic lookup of virtual
functions

 Subtyping
 Tied to inheritance mechanism

Abstraction

 Abstraction means that implementation
details are hidden inside a program unit
with a specific interface.

 For objects, the interface consists of a
set of public functions (or methods) that
manipulate hidden data.

 Abstraction involves restricting access to
a program component according to its
specified interface.

C++: Classes and Data Abstraction

 C++ supports Object-Oriented
Programming (OOP)

 OOP models real-world objects with
software counterparts

 OOP encapsulates data (attributes) and
functions (behavior) into packages called
objects

 Objects have the property of information
hiding

 Objects communicate with one another
across interfaces

 The interdependencies between the
classes are identified

makes use of

 a part of

 a specialisation of

 a generalisation of

 etc.

C++: Classes and Data Abstraction

C and C++

 C programmers concentrate on writing
functions

 C++ programmers concentrate on
creating their own user-defined types calle
d classes

 Classes in C++ are a natural evolution of
the C notion of struct

A User-Defined Type Time
with a struct

// Create a structure, set its members, and print it

// structure definition

struct Time {

 int hour; // 0-23

 int minute; // 0-59

 int second; // 0-59

};

void printMilitary(const Time &); // prototype

void printStandard(const Time &); // prototype

main()
{
 Time dinnerTime; // variable of new type Time

 // set members to valid values
 dinnerTime.hour = 18;
 dinnerTime.minute = 30;
 dinnerTime.second = 0;

 cout << "Dinner will be held at";
 printMilitary(dinnerTime); // 18:30:00
 cout << " military time,\nwhich is ";
 printStandard(dinnerTime); // 6:30:00 PM
 cout << " standard time." << endl;

adds a newline ("\n") and flushes the buffer

 // set members to invalid values
 dinnerTime.hour = 29;
 dinnerTime.minute = 73;
 dinnerTime.second = 103;

 cout << "\nTime with invalid values: ";
 printMilitary(dinnerTime); // 29:73:103 bad values!
 cout << endl;

 return 0;
}// end main

// Print the time in military format
void printMilitary(const Time &t)
{
 cout << (t.hour < 10 ? "0" : "") << t.hour << ":"

<< (t.minute < 10 ? "0" : "") << t.minute << ":"
<< (t.second < 10 ? "0" : "") << t.second;

}

// Print the time in standard format
void printStandard(const Time &t)
{
 cout << ((t.hour == 0 || t.hour == 12) ? 12 :

t.hour % 12)
<< ":" << (t.minute < 10 ? "0" : "") << t.minute
<< ":" << (t.second < 10 ? "0" : "") << t.second
<< (t.hour < 12 ? " AM" : " PM");

}

Comments

 Initialization is not required --> can cause
problems

 A program can assign bad values to
members of Time

 If the implementation of the struct is
changed, all the programs that use the str
uct must be changed [No “interface”]

A Time Abstract Data Type with a
Class

#include <iostream.h>
// Time abstract data type (ADT) definition
class Time {
public:
 Time(); // default constructor
 void setTime(int, int, int);
 void printMilitary();
 void printStandard();
private:
 int hour; // 0 - 23
 int minute; // 0 - 59
 int second; // 0 - 59
};

// Time constructor initializes each data member to zero.
// No return value
// Ensures all Time objects start in a consistent state.
Time::Time() { hour = minute = second = 0; }

// Set a new Time value using military time.
// Perform validity checks on the data values.
// Set invalid values to zero (consistent state)
void Time::setTime(int h, int m, int s)
{
 hour = (h >= 0 && h < 24) ? h : 0;
 minute = (m >= 0 && m < 60) ? m : 0;
 second = (s >= 0 && s < 60) ? s : 0;
}

// Print Time in military format
void Time::printMilitary()
{
 cout << (hour < 10 ? "0" : "") << hour << ":"

<< (minute < 10 ? "0" : "") << minute << ":"
<< (second < 10 ? "0" : "") << second;

}

// Print time in standard format
void Time::printStandard()
{
 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)

<< ":" << (minute < 10 ? "0" : "") << minute
<< ":" << (second < 10 ? "0" : "") << second
<< (hour < 12 ? " AM" : " PM");

}

// Driver to test simple class Time
main()
{
 Time t; // instantiate object t of class Time

 cout << "The initial military time is ";
 t.printMilitary(); // 00:00:00
 cout << "\nThe initial standard time is ";
 t.printStandard(); // 12:00:00 AM

 t.setTime(13, 27, 6);
 cout << "\n\nMilitary time after setTime is ";
 t.printMilitary(); // 13:27:06
 cout << "\nStandard time after setTime is ";
 t.printStandard(); // 1:27:06 PM

 t.setTime(99, 99, 99);
 // attempt invalid settings
 cout << "\n\nAfter attempting invalid settings:\n"
 << "Military time: ";
 t.printMilitary(); // 00:00:00
 cout << "\nStandard time: ";
 t.printStandard(); // 12:00:00 AM
 cout << endl;

 return 0;
} // end main

Output

 The initial military time is 00:00:00

 The initial standard time is 12:00:00 AM

 Military time after setTime is 13:27:06

 Standard time after setTime is 1:27:06 PM

 After attempting invalid settings:
Military time: 00:00:00

 Standard time: 12:00:00 AM

Comments

 hour, minute, and second are private data
members. They are normally not accessibl
e outside the class. [Information Hiding]

 Use a constructor to initiailize the data
members. This ensures that the object is i
n a consistent state when created.

 Outside functions set the values of data
members by calling the setTime method,
which provides error checking.

Classes as User-Defined
Types

 Once the class has been defined, it can be used
as a type in declarations as follows:

Time sunset //object of type Time
Time arrayOfTimes[5] //array of Time objects
Time *pointerToTime //pointer to a Time object

Using Constructors

 Constructors can be overloaded, providing
several methods to initialize a class.

Interface
Time(); // default constructor
Time(int hr);
Time(int hr, int min, int sec);

Implementation
Time::Time(){ hour = minute = second = 0; }
Time::Time(int hr) { setTime(hr, 0, 0); }
Time::Time(int hr, int min, int sec)
 { setTime(hr, min, sec); }

Time t1; // Time() is invoked
Time t1(); //ERROR, intended as a funct prototype

Time t2(08); // class_name object_name(values)
Time t2 = Time(08);
Time t2 = 08;
Time t2 = (Time) 08; // cast

Time t3(08,15,04);
Time t3 = Time(08,15,04);

Using Constructors

Type_name * pointer_name;
Pointer_name = new Type_name;

where Type is a Class or a primitive type

int *ptr;
ptr = new int;

Time *t;
t = new Time; // Time() is invoked
t = new Time(08); // Time(int) is invoked
t = new Time(08,15,04); // Time(int, int, int)
 // is invoked

Using Constructors and
dynamic objects

Using Constructors and
array of objects

Time arrayOfTimes[5]; //Time() is invoked

Explicit array initialization:

//Only the first four elements are inizialized
//Time() (if any) is invoked for the other elements
Time arrayOfTimes[8] = { 3, Time(05), Time(),

Time(01,12,03)}

Using Constructors and
dynamic arrays

Time *t = new Time[8];
// Time() is invoked for each element

int i = 3;
Time (*t) [20] = new Time[3*i] [20];
// Multi-dimension array
// Time() is invoked for each element

positive, can be
variable

positive, constant

In both cases, explicit initialization is not
allowed!

The constructor initializer list

 A list of “constructor calls” that appears only in the
definition of the constructor – after the argument list

 The initialization in the list is executed before any of the
main constructor code.

 This is the place to put all const initializations, primitive
type variables and object variables, except arrays.

class Info
private:
 const int i;
 double m;
 Time t;
Public:
 Info(); // default constructor
};

Info::Info(int j, double n) : i(j), m(n), t(i) {}

Destructors (1)

 To guarantee cleanup when using dynamic
memory

Destroy objects by

Calling the destructors of of object member
variables

Calling superclass destructors (if virtual)
The destructor is called

At the end of object lifetime

Or during a call to delete
Normaly the is no need to call the destructor
explicitly

Destructors (2)

 A public function member ~class_name
with no parameters and no return values

Class_name::~class_name() {
//delete operations
…
}

 Operator delete
 can be called only for an object created by

new
delete ptr;
delete [] ptr;

new() and delete() (1)

 For each new statement, you must provide
exactly one corresponding delete
statement

 Failing to do so causes memory and
resource leaks and can cause undefined
behavior ...

new() and delete() (2)

 Allocating memory
 int* myInt = new int;
 Int* myIntArray = new int[10];

 Deallocating memory
 delete myInt;
 delete[] myIntArray;

Deleting zero pointers

If the pointer you’re deleting is zero, If the pointer you’re deleting is zero,
nothing will happen. nothing will happen.

For this reason, people often recommend setting a For this reason, people often recommend setting a
pointer to zero immediately after you delete it, pointer to zero immediately after you delete it,

to prevent deleting it twice.to prevent deleting it twice.

delete p;
p = 0;

Deleting an object more than once Deleting an object more than once
is definitely a bad thing to do,is definitely a bad thing to do,

and will cause problems.and will cause problems.

Function Declaration

 A function is declared by
returnType funcName(

typename arg1, ...,
typename argN)

 Member function can include a const
modifier in their signature

void helloWorld::sayHello(void) const
 A const method cannot modify class members

 private/protected/public modifier are not
part of the function declaration

Function declaration:Const
modifier

#include <iostream.h>
Class Car{
 private:
 int lenght;
 double weight;
 public:
 int fun_weight(double) const;
};

int Car::fun_weight(double new_weight) const
{
 // weight++; ERROR
 new_weigth += weight;
 return (int) new_weight;
}

Function Declaration
Examples

pass-by-reference &

pass-by-reference *

pass-by-value

In future!!

Call by value

 Called function has its own local copy of
the data
 Changes to the data are local and

Will be discarded as soon as the namespace is
left

 (highly) inefficient with large objects

Call by reference

pass-by-reference &

In future!!

Object Variable Classification (like in C)

 Extern variables double x
 global variables, the prefix extern when declared by

other files

 Static extern variables static double x
 global variables, but can’t be used by other files

 are zero-initialized by default

 Automatic internal variables
 defined within a function/block

 Static internal variables
 like static external variables,

 but defined within a function/block

 retains its state between calls to that
function

int count_calls()
{ static int
calls=0;

//local static
return ++calls; }

Extern variables

 file1.c: declares an
external global var

int GlobalVariable;
// implicit definition

void SomeFunction();
// function prototype (decl.)

int main() {

 GlobalVariable = 1;

 SomeFunction();

 return 0;

}

 file2.c uses the
variable

extern int GlobalVariable;
 // explicit declaration

 void SomeFunction() {
 // function header
(definition)

 ++GlobalVariable;

 }

Static member variables

 A static variable, member of a class, is a
variable shared by all objects created
from the class
Class Car{
 private:
 static int num_cars;
 public:
 …
};
//Outside initialized, like an external variable,
//even if private!
int Car::num_cars = 22;

Static member functions (1)

 Executed in the same manner for all
objects of the given class, e.g., to open a
file or to set static variables.

 They can’t:
 access to non static variables,

 invoke non static functions,

 use the pointer this

 be declared virtual

 Constructors and destructors can’t be
static

Static member functions (2)

#include <iostream.h>
class Car{
 private:
 static int num_cars;
 public:
 Car(); // default constructor
 static void new_car();
};

Static member functions (3)

Car::Car() { num_cars++; }

void Car::new_car(){cout << num_cars << '\n';}
int Car::num_cars = 0; // Access to the static
// private variable is allowed!

int main(int argc, char *argv[])
{
//cout << Car::num_cars; ERROR Access to a
//private variable!
Car a;
Car::new_car(); // or a.new_car() bad style!
return 0;
}

Memory layout (1)

member functions

extern variables,
static variables

dynamic variables

automatic variables
(including pointers)

Memory layout (2)

Pointer have a constant size of 1 word (16 or 32 bit)

Inline functions

 Any function defined within a class body is
automatically inline, but you can also make a non-
class function inline by preceding it with the
inline keyword.

 inline int plusOne(int x) { return ++x; }

inline int plusOne(int x); //has no effect

 Any behavior you expect from an ordinary
function, you get from an inline function.

 The only difference is that an inline function is
expanded in place, like a preprocessor macro in C,
so the overhead of the function call is eliminated.

Default arguments

 When functions have long argument lists, it is tedious
to write (and confusing to read) the function calls
 when most of the arguments are the same for all the

calls.

 A commonly used feature in C++ is called default
arguments.
 A default argument is one the compiler inserts if it

isn’t specified in the function call.

void f(int size, int initQuantity = 0);
void g(int x, int = 0, float = 1.1);

void h(int = 0, int x, float = 1.1); //ERROR

Function overloading

void f(int size, int initQuantity);
void f(int size, double initQuantity);
int f(int size, int initQuantity);//ERROR

 The compiler resolves the correct version of an overloaded
function based on the number/type of arguments in each call

 Functions differing only in their return type cannot be
overloaded.

 Since the returned value may be implicitly converted, the
compiler cannot resolve which version is intended to use

 An immediately useful place for overloading is in constructors.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

