
The ATM case study
in AsmetaL

ATM (Cash machine) (Egon Boerger and Robert Staerk. Abstract

State Machines: A Method for High-Level System Design and Analysis.

Springer, March 11, 2003) : The Problem

Design the control for an ATM, where via a GUI
the customer can perform the following
operations:

•Op1. Enter the ID (the PIN number). Only one
attempt is allowed per session; upon failure the cardattempt is allowed per session; upon failure the card
is withdrawn.

•Op2. Ask for the balance of the account. This
operation is allowed only once and only before
attempting to withdraw money.

•Op3. Withdraw money from the account. Only one
attempt is allowed per session. A warning is issued if
the amount required exceeds the balance of the
account.

ATM – other requirements

Acc. The central system is supposed to be designed
separately.

• It receives the information about every withdrawal
and updates the account balance correspondingly.

• The ATM becomes inaccessible for the customer for
any other transaction until this update has become any other transaction until this update has become
effective.

Ref. Extend the ATM to go out-of-service when not
enough money is left.

ATM use case description

Caso d’uso
(stato ATM)

evento

ASM signature
Domains:

• abstract domain NumCard

• enum domain State =
{ AWAITCARD | AWAITPIN | CHOOSE | OUTOFSERVICE |
CHOOSEAMOUNT | STANDARDAMOUNTSELECTION |
OTHERAMOUNTSELECTION}
States of the ATMStates of the ATM

• enum domain Service = {BALANCE | WITHDRAWAL |
EXIT}
The customer can: ask for the balance or withdraw money
or exit

•domain MoneySize subsetof Integer
e.g. = {10, 20, 40, 50, 100, 150, 200}

•enum domain MoneySizeSelection = {STANDARD |
OTHER}

ASM signature
Functions

• dynamic controlled currCard: NumCard
the currently inserted card
• dynamic controlled atmState: State
records the state of the ATM
• dynamic controlled outMess: Any
an output function whose values abstractly represent the
messages to be displayed on the screen
• static pin: NumCard -> Integer the PIN of a card• static pin: NumCard -> Integer the PIN of a card
• dynamic controlled balance: NumCard -> Integer
the account’s balance
• dynamic controlled accessible: NumCard -> Boolean
indicates whether or not a previous customer ATM
operation is still pending in the central system. By setting
accessible(CurrCard) to false (see the rule guards for
entering a pin number) prevent further transactions until
the central system changes the accessibility back to true.

ASM signature
Other functions

• dynamic monitored insertedCard: NumCard
inserted card
• dynamic monitored insertedPin: Integer
inserted PIN
• dynamic monitored selectedService: Service
selected service
• dynamic monitored standardOrOther: MoneySizeSelection
selected money size: STANDARD or OTHERselected money size: STANDARD or OTHER
• dynamic monitored insertMoneySize: Integer
selected money size (in case of OTHER)
• dynamic controlled moneyLeft: Integer
ATM cash

• derived allowed: Prod(NumCard, Integer) -> Boolean
withdrawal iff the balance is >= to the requested money

function allowed($c in NumCard, $m in Integer) =
balance($c) >= $m

ASM transition rules
Insert a card:

By requirement Op1, the insertion of a card (preceding
entering an ID) can be formalized as follows

rule r_insertcard =
if (atmState=AWAITCARD) then
if (exist $c in NumCard with $c=insertedCard) then

parpar
currCard := insertedCard
atmState := AWAITPIN
outMess := "Enter pin"

endpar
endif

endif

ASM transition rules
Enter the PIN: By Op1 the inserted PIN must be correct and by the
requirement Acc, access should be granted only if the account of the
current card is accessible

rule r_enterPin =
if (atmState=AWAITPIN) then
if (insertedPin=pin(currCard) and accessible(currCard))
then par
outMess := "Choose service"
atmState := CHOOSEatmState := CHOOSE

endpar
else //wrong PIN or account inaccesible: the card is returned

//by setting atmState := AWAITCARD
par

atmState := AWAITCARD
if (insertedPin!=pin(currCard))
then outMess := "Wrong pin” endif

if (not(accessible(currCard)) and insertedPin=pin(currCard))
then outMess := "Account non accessible“ endif

endpar
endif

endif

ASM transition rules
Choose service:

By Op2 and Op3: ask for balance, or for money, or exit

rule r_chooseService =
if (atmState=CHOOSE)
then par
if (selectedService=BALANCE) //display the balance
then outMess := balance(currCard) endif

if (selectedService=WITHDRAWAL)
then parthen par
atmState := CHOOSEAMOUNT // standard or other

outMess := "Choose Standard or Other"
endpar endif
if (selectedService=EXIT)
then par
atmState := AWAITCARD // choice: EXIT
outMess := "Goodbye"

endpar endif
endpar
endif

ASM transition rules
Choose amount: By Op3

rule r_chooseAmount =
if (atmState=CHOOSEAMOUNT) then

par
if (standardOrOther=STANDARD) then

par
atmState := STANDARDAMOUNTSELECTION

outMess := "Select a money size"
endpar

endifendif
if (standardOrOther=OTHER) then

par
atmState := OTHERAMOUNTSELECTION
outMess := "Enter money size"

endpar
endif

endpar
endif

ASM transition rulesWithdraw money: By Op3

rule r_withdraw =
par
if (atmState=STANDARDAMOUNTSELECTION)
then if (exist $m in MoneySize with $m=insertMoneySize)

then if (insertMoneySize<=moneyLeft)
then r_processMoneyRequest [insertMoneySize]

else outMess := “No enough cash in the ATM"
endif

endifendif
endif
if (atmState=OTHERAMOUNTSELECTION)
then if (mod(insertMoneySize, 10)=0)

then if (insertMoneySize<=moneyLeft)
then r_processMoneyRequest [insertMoneySize]

else outMess := " No enough cash in the ATM "
endif

else outMess := “Money size not available"
endif
endif

endpar

ASM transition rules
Process money request: By Op3

rule r_processMoneyRequest ($m in Integer) =
if (allowed(currCard, $m))
then r_grantMoney[$m]
else outMess := "Not enough money in your account"
endif

ASM transition rules
Grant money: By Op3

rule r_grantMoney($m in Integer) =
par

r_subtractFrom[currCard, $m] //update the account balance
moneyLeft := moneyLeft - insertMoneySize //ATM cash decreases
seq
accessible(currCard) := false //set the account inaccessible
accessible(currCard) := true //Another agent should unblockaccessible(currCard) := true //Another agent should unblock

//the account! Così inutile
endseq
atmState := AWAITCARD //the card is returned to the customer
outMess := "Goodbye"

endpar

rule r_subtractFrom ($c in NumCard, $m in Integer) =
balance($c) := balance($c) - $m

ASM transition rules
Go out of service: By ref.

macro rule r_goOutOfService =
if (moneyLeft < minMoney) then

par
atmState := OUTOFSERVICE
outMess := "Out of Service"

endpar
endifendif

where (a new function is added to the signature):

static minMoney: Integer
Minimum amount of money to permit the ATM to work

ASM transition rules
Go out of service: By ref.

macro rule r_goOutOfService =
if (moneyLeft < minMoney) then

par
atmState := OUTOFSERVICE
outMess := "Out of Service"

endpar
endifendif

where:

static minMoney: Integer
Minimum amount of money to permit the ATM to work

static maxPrelievo: Integer
Maximum amount of money one can withdraw

ASM transition rules
Main rule:

main rule r_Main =
seq

r_goOutOfService[]
par

r_insertcard[]
r_enterPin[]
r_chooseService[]r_chooseService[]
r_chooseAmount[]
r_prelievo[]

endpar
endseq

