

Objects in C++

History

◆ C++ is an object-oriented extension of C
◆ C was designed by Dennis Ritchie at Bell

Labs
• used to write Unix
• based on BCPL

◆ C++ designed by Bjarne Stroustrup at Bell
Labs
• His original interest at Bell was research on

simulation
• Early extensions to C are based primarily on

Simula
• Called “C with classes” in early 1980’s
• Popularity increased in late 1980’s and early

1990’s
• Features were added incrementally

Classes, templates, exceptions, multiple
inheritance, type tests...

Design Goals

◆ Provide object-oriented features in C-
based language, without compromising
efficiency
• Backwards compatibility with C
• Better static type checking
• Data abstraction
• Objects and classes
• Prefer efficiency of compiled code where

possible

◆ Important principle
• If you do not use a feature, your compiled

code should be as efficient as if the language
did not include the feature.

What is Data Abstraction?

◆ Abstract Data Types (ADTs)
• type implementation & operations
• hidden implementation

◆ types are central to problem solving

◆ a weapon against complexity

◆ built-in and user-defined types are ADTs

How Well are ADTs Supported in
C?

◆ Does C enforce the use of the ADTs
interface and the hiding of its implementat
ion?

◆No

C++

◆ C++ is a superset of C, which has
added features to support object-orien
ted programming

◆ C++ supports classes
• things very like ADTs

How successful?

◆ Given the design goals and constraints,
• this is a very well-designed language

◆ Many users -- tremendous popular success
◆ However, very complicated design

• Many specific properties with complex
behavior

• Difficult to predict from basic principles
• Most serious users chose subset of language

– Full language is complex and unpredictable

• Many implementation-dependent properties
• Language for adventure game fans

Email discussion group
comment

 ... in my group ... we do use C++
regularly and find it very useful but
certainly not perfect. Every full moon,
however, we sacrifice a virgin disk to
the language gods in hopes that the
True Object-Oriented Language will
someday be manifest on earth, or at
least on all major platforms. :-)

Rick Pember, LLNL

Further evidence

◆ Many style guides for using C++ “safely”
◆ Every group I’ve ever talked to has

established some conventions and
prohibitions among themselves.
• don’t inherit implementation
• SGI compiler group -- no virtual functions
• Others

Significant constraints

◆ C has specific machine model
• Access to underlying architecture

◆ No garbage collection
• Consistent with goal of efficiency
• Need to manage object memory explicitly

◆ Local variables stored in activation
records
• Objects treated as generalization of structs, so

some objects may be allocated on stack
• Stack/heap difference is visible to programmer

Overview of C++

◆ Additions and changes not related to
objects
• type bool
• pass-by-reference & the Copy-Constructor
• user-defined overloading
• function template
• exception handling
• …

OO Programming Languages
Four main concepts:

1. Abstraction: implementation details hidden inside a
program unit with a specific interface. The interface is
a set of public functions (or methods) over hidden
data.

2. Inheritance: reusing the definition of one kind of
object to define another kind of object.

3. Dynamic lookup: a method is selected at run time,
according to the implementation of the object, not
some static property of the pointer/var used to name
the object.

4. Subtyping is a relation on types that allows values
(or objects) of one type to be used in place of values
(or objects) of another.Inheritance Is Not Subtyping!

“Subtyping is a relation on interfaces,
inheritance is a relation on implementations.”

C++ Object System

◆ Object-oriented features
1. Classes and Data Abstraction
2. Encapsulation
3. Inheritance

– Single and multiple inheritance
– Public and private base classes

4. Objects, with dynamic lookup of virtual
functions

5. Subtyping
– Tied to inheritance mechanism
– A will be recognized by the compiler as a

subtype of B only if B is a public base class of A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

