

Objects in C++
 Subtyping

C++ Object System

 Object-oriented features
1. Classes and Data Abstraction
2. Encapsulation
3. Inheritance

 Single and multiple inheritance
 Public and private base classes

1. Objects, with dynamic lookup of virtual
functions

1. Subtyping
 Tied to inheritance mechanism

Subtyping (1)

 Subtyping is a relation on types that allows values
of one type to be used in place of values of another.
 If some object a has all of the functionality of

another object b, then we may use a in any
context expecting b.

 Inheritance Is Not Subtyping
 “Subtyping is a relation on interfaces, inheritance

is a relation on implementations.”

 A typical example is C++, in which
 A class A will be recognized by the compiler as a

subtype of B only if B is a public base class of A

Subtyping (2)

 (A<:B = A subtype of B)
 Subtyping in principle

 A <: B if every A object can be used without
type error whenever a B object is required

Pt: int getX();
 void move(int);
ColorPt: int getX();
 int getColor();
 void move(int);
 void darken(int tint);

 C++: A <: B if class A has public base
class B

Public members

Public members

Sample derived class

class ColorPt: public Pt {
 public:
 ColorPt(int xv,int cv);
 ColorPt(Pt* pv,int cv);
 ColorPt(ColorPt* cp);
 int getColor();
 virtual void move(int dx);
 virtual void darken(int tint);
 protected:
 void setColor(int cv);
 private:
 int color;
 };

Overloaded constructor

Non-virtual function

Virtual functions

Protected write access

Private member data

In C++: public base
class gives supertype!

Independent classes not
subtypes

class Point {

 public:

 int getX();

 void move(int);

 …

};

class ColorPoint {
 public:
 int getX();
 void move(int);
 int getColor();
 void darken(int);
 …

};

 C++ does not treat ColorPoint <: Point as written
 Need public inheritance ColorPoint : public Pt
 Subtyping based on inheritance:

 An efficiency issue
 An encapsulation issue: preservation under

modifications to base class …

Why C++ design?

 Client code depends only on public interface
 In principle, if ColorPt interface contains Pt

interface, then any client could use ColorPt in
place of point

 However -- offset in virtual function table may
differ

 Lose implementation efficiency

 Without link to inheritance
 subtyping leads to loss of implementation

efficiency

 Also encapsulation issue:
 Subtyping based on inheritance is preserved

under modifications to base class …

Function subtyping

 Subtyping principle
 A <: B if an A expression can be safely used in

any context where a B expression is required

 Subtyping for function results
 If A <: B, then C → A <: C → B

 Subtyping for function arguments
 If A <: B, then B → C <: A → C

 Terminology
 Covariance: A <: B implies F(A) <: F(B)
 Contravariance: A <: B implies F(B) <: F(A)

Examples

 If circle <: shape, then

C++ compilers recognize limited forms of function subtyping

circle → shape

shape → shape circle → circle

shape → circle

Subtyping with functions

 In principle: can have ColorPoint <: Point

 In practice: some compilers allow, others have
not

 This is covariant case; contravariance is another
story

class Point {

 public:

 int getX();

 virtual Point *move(int);

 protected: ...

 private: ...

};

class ColorPoint: public Point {
 public:
 int getX();
 int getColor();
 ColorPoint * move(int);
 void darken(int);
 protected: ...

 private: ...

};

Inherited, but
repeated
here for clarity

Details, details

 This is legal
class Point { …

 virtual Point * move(int);

… }

class ColorPoint: public Point { …

 virtual ColorPoint * move(int);

 … }

 But not legal if *’s are removed
class Point { … virtual Point move(int); … }

class ColorPoint: public Point { …virtual ColorPoint
move(int);… }

Related to subtyping distinctions for object L-values and object
R-values

(Non-pointer return type is treated like an L-value for some
reason)

Subtyping and Object L,R-
Values

 If class B : public A { … }
 Then

 B r-value <: A r-value
 If x = a is OK, then x = b is OK

 provided A’s
operator = is public

 If f(a) is OK, then f(b) is OK

 provided A’s copy
constructor is public

 B l-value <: A l-value
 B* <: A*
 B** <: A**

Generally, X <: Y  X* <: Y* is
unsound.

Review

 Why C++ requires inheritance for subtyping
 Need virtual function table to look the same
 This includes private and protected members
 Subtyping w/o inheritance weakens data

abstraction

 Possible confusion regarding inlining
 Cannot generally inline virtual functions
 Inlining is possible for non virtual function

Inlining is very significant for efficiency; enables further
optimization.

Abstract Classes

 Abstract class:
 A class that has at least one pure virtual member

function, i.e a function with an empty
implementation

 Declare by: virtual function_decl = 0;
 A class without complete implementation
 Useful because it can have derived classes

 Since subtyping follows inheritance in
C++, use abstract classes to build
subtype hierarchies.

 Establishes layout of virtual function table (vtable)

 Example
 Geometry classes

 Shape is abstract supertype of circle, rectangle, ...

Multiple Inheritance

Inherit independent functionality from independent
classes

Shape Colored

Colored

Rectangle

Rectangle
mov

e

setColor

mov
esetColor

class CR : public R, public C { … };

Problem: Name Clashes

class A {
 public:
 void virtual f() { … }
};
class B {
 public:
 void virtual f() { … }
};
class C : public A, public B { … };
…
 C* p;
 p->f(); // error

 same name
in 2 base
classes

Possible solutions to name
clash

 Three general approaches
 Implicit resolution

 Language resolves name conflicts with arbitrary rule

 Explicit resolution
 Programmer must explicitly resolve name conflicts

 Disallow name clashes
 Programs are not allowed to contain name clashes

 No solution is always best
 C++ uses explicit resolution by using fully

qualified names

Repair to previous example

 Rewrite class C to call A::f explicitly
class C : public A, public B {
 public:
 void virtual f() {
 A::f(); // Call A::f(), not

B::f();
 }

 Reasonable solution
 This eliminates ambiguity
 Preserves dependence on A

 Changes to A::f will change C::f

vtable for Multiple
Inheritance

class A {
 public:
 int x;
 virtual void

f();
};
class B {
 public:
 int y;
 virtual void

g();
 virtual void

f();
};

class C: public A, public B
{

 public:
 int z;
 virtual void f();
};

 C *pc = new C;
 B *pb = pc;
 A *pa = pc;

Three pointers to same
object, but different static
types.

Object and classes

 Offset δ in vtbl is used in call to pb->f, since C::f
may refer to A data that is above the pointer pb

 Call to pc->g can proceed through C-as-B vtbl

C object

C

A B

vptr

B data

vptr

A data

C data

B object

A object
& C::f 0

C-as-A vtbl

C-as-B vtbl

& B::g 0

& C::f δ

δ
pa, pc

pb

Multiple Inheritance
“Diamond”

 The implementation is inherited twice
 C objects consist of two windows, one capable of

displaying text and the other capable of displaying
graphics!

Window (D)

Text Window (A) Graphics Window (B)

Text, Graphics

Window (C)

The diamond inheritance Problem: an interesting kind of
name clash

D DA B

Obj C

A solution: virtual base
classes

 C++ has a mechanism for eliminating
multiple copies of duplicated base-class
members,

 called virtual base classes and consists
in declaring D as virtual base class of A
and B

C

A B

Dclass A : public virtual D
{ … }

class B : public virtual D
{ … }

DA B

Obj C

Diamond inheritance in C++

 Standard base classes
 D members appear twice

in C
 Virtual base classes

 class A : public virtual
D { … }

 Avoid duplication of base
class members

 Require additional
pointers so that D part of
A, B parts of object can be
shared

C

A B

D

 C++ multiple inheritance is complicated in part
because of desire to maintain efficient lookup

 Virtual base classes give rise to other type conversion
problems

A part

D part

C part

B part

C++ Summary

 Objects
 Created by classes
 Contain member data and pointer to class

 Encapsulation
 member can be declared public, private,

protected
 object initialization partly enforced

 Classes: virtual function table

 Inheritance
 Public and private base classes, multiple

inheritance

 Subtyping: Occurs with public base classes only

Some problem areas

 Casts
 Sometimes no-op, sometimes not (esp multiple inher)

 Lack of garbage collection
 Memory management is error prone

 Constructors, destructors are helpful though

 Objects allocated on stack
 Better efficiency, interaction with exceptions
 BUT assignment works badly, possible dangling ptrs

 Overloading
 Too many code selection mechanisms

 Multiple inheritance
 Efforts at efficiency lead to complicated behavior

Additional topics if more time

 Style guides for C++:
 Should a programming language enforce good

style?
 Make it easier to use good style than bad?
 Simply make it possible to do whatever you want?

 Design patterns and use of OO
 Other topics of interest??

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

