A L N D L N R R T T TR

Objects In C++

Objects, with dynamic lookup of
virtual functions

B A T AT I T T I N R

C++4 Object System

ST R T L N AR R T LA TR T TR I R R T T e T M e P R T T T M T L S R T TR T T T I R

B (Object-oriented features
1.Classes and Data Abstraction
2.Encapsulation

3.Inheritance
1.Single and multiple inheritance
2.Public and private base classes

4.0bjects, with dynamic lookup of virtual functions
5.5ubtyping

1.Tied to inheritance mechanism

Polymorphism in C++
® Runtime polymorphism

® Virtual functions
B Compile-time polymorfism

B (parametric polymorfism)

® templates

b et T bR Sy

Run-time Polymorphism

L A LN Thae b et T bR Sy

® Run-time polymorphism: implemented with
dynamic lookup of virtual functions

® Dynamic lookup: a method Is selected
dynamically, at run time, according to the
implementation of the object that receives a
message

B not some static property of the pointer or variable
used to name the object

® The important property of dynamic lookup is that
different objects may implement the same
operation differently

Virtual functions

Ein e eV A % R A T L R A e e A, B A T T e T P I R T T e T PR e L I R

B Member functions are either
B Virtual, if explicitly declared or inherited as virtual
® Non-virtual otherwise

® Virtual members
B Are accessed by indirection through ptr in object
® May be overridden in derived (sub) classes

B Non-virtual functions

® Are called in the usual way. Just ordinary
functions.

B May be redefined in derived classes (overloading
through redefining)

B Dav; nvvarbhaad anlys 1f vvaarr 1ica viirknial fiincrinnc

Sample class: one-dimen.
points

class Pt {
public:
Pt(int XV)'} Overloaded constructor
Pt(Pt* pv);
Int getX(); Virtual function

virtual void move(int
dx);

protected:
void setX(int Bavpte member data
private:

Nk v

Public read access to private data

Protected write access

Sample denved class

e R T L P T I R R T T e T T e B R

class ColorPt: publlc Pt {
public:
ColorPt(int xv,int cv)
Co Ol‘:’t(Pt* oV, int(Vfrloaded constructor
ColorPt(ColorPt*
int getColor();
virtual void move(int

F?\I)dn—virtual function

} Virtual functions

dx);

virtual void darkemtordcted write access
tint):;
protected: Private member data

void setColor(int cv):

Sample derived class

T VA T . T4)| T I R P A R T T e T R P AR

[== - Definitions of Member Functions

void ColorPt::darken(int tint) { color += tint;
}

void ColorPt::move(int dx) {
Pt::move(dx): this->darken(1);
}

Virtual functions and /ndirection

(1)

e I T T L N A T T T T T I R T T e T R e S O T T e P M L S R T L P D i R R

B C++ allows a base class pointer to point
to a derived class object

® Upon method invocation, the method of
the derived object is called

® This leads to generic alghoritms using
base class pointers

Pt* ptr = new ColorPt;
ptr->move();

delete(ptr);

Virtual functions and /ndirection

Tl AR T T T R e P O B T T T L M e R R

2
>

BaseClass f()

|
D1 f()

I
D2 f() doesn’t

ep<ist
> D3 f() doesn’t
exist

obj

Run-time representation

ST R T L N AR R T LA TR T TR I R R T T e T M e P R T T T M T L S R T TR T T T I R

Point object

Code for

I

Point vtable

[
>

vptr

X-

ColorPoint object

vptr
X
C

Virtual pointers

ColorPoint Code for
" -
Code for

Virtual tables Function code

Compare to Smalltalk

ST R T L N AR R T LA TR T TR I R R T T e T M e P R T T T M T L S R T TR T T T I R

Point class | Template

Point object
Method dictionary

ColorPoint ColorPoint class Template

objec Method dictionary

Why is C++ lookup simpler?

® Smalltalk has no static type system
B Code p message:pars could refer to any object
® Need to find method using pointer from object
B Different classes will put methods at different
place in method dictionary
B C++ type gives compiler some superclass

B Offset of data, fctn ptr same in subclass and
superclass

B Offset of data and function ptr known at compile
time
B Code p->moveé(x) compiles to equivalent of

(*(p->vptr PR RS HEHTS DR UAFLRE SRR R o'

Calls to virtual functions

RN D R

® One member function may call another
class A {
public:
virtual int f (int x);
virtual int g(inty);
b
int A::f(int x) { ... g(i) ...;}
int A::g(inty) { ... f(j) ...;}

® How does body of f call the right g7

B |f g iIs redefined In derived class B, then
iInherited f must call B::g

“This” pointer

L L AT R L SR T e e R T LT Ao Vb AL T L

B Code is compiled so that member function
takes “object itself” as first argument

Code int A::f(int x) { ... g(i) ...;}
compiled as int A:f(A *this, int x) { ... this->g(i)
o}

B “this” pointer may be used in member
function
B Can be used to return pointer to object itself,

pass pointer to object itself to another
function, ...

I0ONS

LT e P o e T T L P D L i R

Non-virtual funct

VL L . T e R T TR D P A

® How is code for non-virtual function found?

B Same way as ordinary “non-member”
functions:

B Compiler generates function code and assigns
address

® Address of code is placed in symbol table

B At call site, address is taken from symbol table
and placed in compiled code

B Sut some special scoping rules for classes

® Overloading

B Remember: overloading is resolved at compile
time

Scope rules in C+

VR AT R L S R e e T R

IR L N A R T T R T P T I R R T T T PR e S I R

B Scope qualifiers

® binary :: operator, ->, and .

B class::member, ptr->member, object.member
® A name outside a function or class,

® not prefixed by unary :: and not qualified
refers to global object, function, enumerator or

type.
B A name after X::, ptr-> or obj.

® where we assume ptr is pointer to class X and
obj is an object of class X

B refers to a member of class X or a base class
of X

Virtual vs Overloaded
Function

class parent { public:

void printclass() {printf("p ");};

virtual void printvirtual() {printf("p ");}; };
class child : public parent { public:

void printclass() {printf("c ");};

virtual void printvirtual() {printf("c");}; 1};
main() {

parent p; child c; parent *q;

p.printclass(); p.printvirtual(); c.printclass(); c.printvirtual();

q = &p; g->printclass(); g->printvirtual();

g = &c; g->printclass(); g->printvirtual();

}
OQutput: ppccpppocC

Function call binding

A RV AT TR 5 oL 2% g ¥ T I R

= early binding (C, C++)
» at compile time

» late binding (C++)
« at runtime

» Mighty, but a bit |less efficient
= 1 more assembler statement per call,
= slight memory overhead due to VPTRs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

