

Objects in C++
 Inheritance

C++ Object System

 Object-oriented features
1.Classes and Data Abstraction
2.Encapsulation
3.Inheritance

 Single and multiple inheritance

 Public and private base classes

4.Objects, with dynamic lookup of virtual
functions

5.Subtyping
 Tied to inheritance mechanism

Inheritance (1)
The ability to reuse the definition of one kind of

object to define another kind of object.

Class hierarchies

Constructors/destructors
and inheritance (1)

Constructors/destructors
and inheritance (2)

Public, private, protected
inheritance

class CD: public CB{…}

class CD: private CB{…} or class CD: CB{…}

class CD: protected CB{…}

Private inheritance –publicize members

class CBase {
 int x;
public:
 int y;
 voif f();
 void f(int);
};
class CDerivata: Cbase{ // private inheritance
public:
 CBase::y; // y is turned in pubblic
 CBase::x; // ERROR. Not allowed!! x is private
 CBase::f; // Both overloaded members exposed
};

 Thus, private inheritance is useful if you want to
hide part of the functionality of the base class.

 In the presence of private inheritance, a subclass in
not a subtype

Multiple inheritance

However, multiple inheritance
introduces a number of possibilities for

ambiguity!

Redefining (1)
class X {
 int i;
 public:
 X() { i = 0; }
 void set(int ii) { i = ii; }
 int permute() { return i = i * 47; }
};

class Y : public X {
 int i; // Different from X's i
 public:
 Y() { i = 0; }
 int change() {
 i = permute(); // Different name call
 return i;
 }

 void set(int ii) { // redefining
 i = ii;
 X::set(ii); // Same-name function call
 }
};

Redefining (2)

 Redefining for ordinary member functions and
overriding when the base class member function
is a virtual function

 Redefining produces an overloaded function,

with code selection done at compile time
through the
operator class_name::

 Virtual functions are the normal case and will be
covered in detail later

 Polymorphism is implemented in C++ with the
dynamic lookup of virtual functions

Redefining (3)

#include <iostream>
class A{
 int i;
 public:
 A(): i(1){};
 int f(){ return i;}
};
class B: public A{
 int i;
 public:
 B():i(2){};
 void f(int s){i = s;} //REDEFINING
 int g(){
 // return f(); ERROR
 return A::f(); //OK
 }
};

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

