
  

Objects in C++
 Inheritance



  

C++ Object System

 Object-oriented features
1.Classes and Data Abstraction
2.Encapsulation
3.Inheritance

 Single and multiple inheritance

 Public and private base classes 

4.Objects, with dynamic lookup of virtual 
functions

5.Subtyping 
 Tied to inheritance mechanism



  

Inheritance (1)
The ability to reuse the definition of one kind of

object to define another kind of object. 



  

Class hierarchies



  

Constructors/destructors 
and inheritance (1)



  

Constructors/destructors 
and inheritance (2)



  

Public, private, protected 
inheritance

class CD: public CB{…}

class CD: private CB{…} or class CD: CB{…}

class CD: protected CB{…}



  

Private inheritance –publicize members

class CBase {
   int x;
public:
   int y;
   voif f();
   void f(int);
};
class CDerivata: Cbase{ // private inheritance
public:
   CBase::y; // y is turned in pubblic
   CBase::x; // ERROR. Not allowed!! x is private
   CBase::f; // Both overloaded members exposed
};

 Thus, private inheritance is useful if you want to 
hide part of the functionality of the base class.

 In the presence of private inheritance, a subclass in 
not a subtype



  

Multiple inheritance

However, multiple inheritance 
introduces a number of possibilities for 

ambiguity!



  

Redefining (1)
class X {
  int i;
  public:
  X() { i = 0; }
  void set(int ii) { i = ii; }
  int  permute() { return i = i * 47; }
};

class Y : public X {
 int i; // Different from X's i
 public:
 Y() { i = 0; }
 int change() {
   i = permute(); // Different name call
   return i;
 }

 void set(int ii) {  // redefining
   i = ii;
   X::set(ii); // Same-name function call
 }
};



  

Redefining (2)

 Redefining for ordinary member functions and 
overriding when the base class member function 
is a virtual function

 
 Redefining produces an overloaded function, 

with code selection done at compile time 
through the 
operator class_name:: 

 Virtual functions are the normal case and will be 
covered in detail later

 Polymorphism is implemented in C++ with the 
dynamic lookup of virtual functions



  

Redefining (3)

#include <iostream>
class A{
 int i;
 public:
 A(): i(1){}; 
 int f(){ return i;}
};
class B: public A{
 int i;
 public:
 B():i(2){}; 
 void f(int s){i = s;} //REDEFINING
 int g(){ 
     // return f(); ERROR 
     return A::f(); //OK    
 }
};


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

