

Objects in C++
 Encapsulation

C++ Object System

 Object-oriented features
1.Classes and Data Abstraction
2.Encapsulation
3.Inheritance

 Single and multiple inheritance

 Public and private base classes

4.Objects, with dynamic lookup of virtual
functions

5.Subtyping
 Tied to inheritance mechanism

Encapsulation

 Encapsulation means that
implementation details are hidden inside a
program unit with a specific interface.

 A way to provide abstraction: the
interface of objects usually consist of a set
of public functions that manipulate hidden
data.

 Incapsulation involves restricting access
to a program component according to its
specified interface.

Struct and Class in C++ (1)

 A struct is a way to collect a group of variables,
like in C.

struct Structure1 {
char c;
int i;

};

int main() {
struct Structure1 s1, s2;
// the keyword struct is optional in C++
…
}

Struct and Class in C++ (2)

 In C++ struct and class have been made
similar

 In C++, a struct can contain
member functions

 private fields

 By default, all members of a struct are
public

 By default, all members of a class are
private

 Similar considerations also apply to union

Visibility

 Public, private, protected levels of visibility
Public: visible everywhere

Protected: within class and subclass declarations

Private: visible only in class where declared,
inherited private members exist in the derived class,
but cannot be named directly in code written as part
of the derived class.

 Friend functions and classes
 Friend allows special access

Careful attention to visibility and data abstraction

Are executed faster

Private, protected, public levels of
visibility

 Member data is made private, so that changes do
not affect the way that other classes (including
derived classes) depend on this class.

 Members that modify private data are made
protected, so that derived classes may change the
value of member data, but external code is not
allowed to do so.

 Finally, member functions that read the value of
member data and provide useful operations on
objects are declared public.

Friend functions (1)

 A class may declare friend functions

 The friend designation is used to allow
visibility to the private and protected
part of a class

 A friend function can be
 a public member function of another class

 an external function

Friend functions (2)

class A {
private:
 int i;
public:
friend int B::f(int n, A* a);
…
};

class B {
private:
 int i;
public:
 int f(int n, A* a);
…
};

int B::f(int n, A* a) {
 return i + a->i + n;
}

Friend classes

 If a class B has the declaration friend class A, then
code written as part of A has access to the private/private
part of B.

 The friend mechanism is used when a pair of classes
is closely related, such as matrices and vectors.

class A {
int a;
friend class B;
};

class B {
public: void foo();
};

B::foo() {
A a_obj;
a_obj.a = 10;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

