
The Invoice Order system
case study
in AsmetaL

Riferimento

Egon Boerger and Angelo Gargantini and
Elvinia Riccobene
ASM
in Software Specification Methods, An
Overview Using a Case Study Edited by: Henri
Habrias and France Marc Frappier,

ISBN: 1905209347 (2006)

Disponibile dalla mia home page

Invoicing orders (M. Allemand et al. (eds.). Comparing Techniques,

ISBN 2-906082-29-5. IRIN Nantes, March 1998) : The Problem

• R1: The subject is to invoice orders.

• R2: To invoice is to change the state of an order (to
change it from the state “pending” to “invoiced”).

• R3: On an order, we have one and one only reference to
an ordered product of a certain quantity. The quantity
can be different to other orders.

• R4: The same reference can be on several different
orders.

• R5: The state of the order will be changed into “invoiced”
if the ordered quantity is <= to the quantity which is in
stock according to the reference of the ordered product.

Invoicing orders (M. Allemand et al. (eds.). Comparing Techniques,

ISBN 2-906082-29-5. IRIN Nantes, March 1998) : The Problem

R6: All the ordered references are references in stock. The stock
or the set of the orders may vary due to:

– the entry of new orders or cancelled orders

– having a new entry of quantities of products in stock
at the warehouse

You have to consider the two following cases:

(a) Case 1

• You do not have to take these entries into account. This
means that you will not receive two entry flows (orders, entries
in stock). The stock and the set of orders are always
given to you in a up-to-date state.

(b) Case 2

• You have to take into account the entries of:

– new orders

– cancellations of orders

– entries of quantities in the stock

ASM signature -Case 1 Domains:
● abstract domain Orders set of orders - by R1, static by R6a

● domain Quantity subsetof Natural the quantity values, by R3

● abstract domain Products set of orders - by R3

● enum domain Order_status= {INVOICED|PENDING}

Functions:
● dynamic monitored referencedProduct: Orders -> Products

the product referenced in an order - by R3

● dynamic monitored orderQuantity: Orders ->Quantity
returns the quantity in the order - by R3
not injective, not constant – by R4

● dynamic controlled stockQuantity: Products -> Quantity
the quantity of products in stock - by R5
Assumption: the stock is only updated by the system

● dynamic controlled orderState: Orders -> Order_status
the status of an order – dynamic controlled by R2 and R5

ASM transition rules
To invoice an order at a time:
By R2,R5 there is only one transition to change the state of an order

A single-order rule can be as follows: per step at most one order is invoiced, with an
unspecified schedule (not taking into account any arrival time of orders) and with
a deletion function under the assumption that stockQuantity is updated only by
invoicing.

rule r_InvoiceSingleOrder =
 choose $order in Orders with orderState($order) = PENDING and
 orderQuantity($order) <=
 stockQuantity(referencedProduct($order))
 do par
 orderState($order) := INVOICED
 r_DeleteStock[referencedProduct($order),orderQuantity($order)]
 endpar

rule r_DeleteStock($p in Products ,$q in Quantity)=
 stockQuantity($p):= stockQuantity($p) - $q

ASM transition rules
Other strategies to simultaneously invoice a certain number of orders
for one product at a time:
In case all orders for one product are simultaneously invoiced (or none
if the stock cannot satisfy the request), a all-or-none strategy can be
expressed by the following rule InvoiceAllOrNone:
Function pendingOrders yields the set of pending orders for a certain
product, while the (static) function totalQuantity returns the total
quantity of a set of orders. rule r_InvoiceAllOrNone =
 choose $product in Products do
 let ($pending = pendingOrders($product)) in
 let ($total = totalQuantity($pending)) in
 if $total <= stockQuantity($product) then
 par
 forall $order in $pending do
 orderState($order) := INVOICED
 r_DeleteStock[$product, $total]
 endpar
 endif
 endlet
 endlet

First strategy

Auxiliary functions

static function

pendingOrders($p in Products): Powerset(Orders) =

{$o | $o in Orders with orderState($o) = PENDING and

referencedProduct($o) = $p}

static function

totalQuantity($so in Powerset(Orders)): Quantity =

if (isEmpty($so)) then 0

else let $first = first(asSequence($so) in

quantity($first) + totalQuantity(excluding($so,$first))

endif

Insieme finito di ordini

ASM transition rules
Other strategies to simultaneously invoice a certain number of orders
for one product at a time:
To avoid the deadlock when the stock cannot satisfy any request, the following rule
InvoiceOrdersForOneProduct introduces some non determinism in the choice of a
set of pending orders which can be invoiced according to the available quantity in
stock.

rule r_InvoiceOrdersForOneProduct =
 choose $product in Products do
 let ($pending = pendingOrders($product)) in
 choose $orderSet in Powerset($pending) with
 totalQuantity($orderSet) <= stockQuantity($product) do
 par
 forall $order in $orderSet
 do orderState($order) := INVOICED
 r_DeleteStock[$product, totalQuantity($orderSet)]
 endpar
 endlet

Second strategy

ASM transition rules
Other strategies to simultaneously invoice a certain number of orders
for all products at a time:

To parallelize invoicing orders over all products, a slight variant of the previous rule
can be obtained replacing the choose $product in Products with forall $product in
Products.

Fourth strategy

Third strategy

To further maximize a product quantity invoiced at the time, a new strategy, the
rule InvoiceMaxOrdersForOneProduct,consists in choosing a maximal invoicable
subset of simultaneously invoiced pending orders for the same product.

For this rule we need to define a static function maxQuantitySubsets :
Powerset(Powerset(Orders)) ->
Powerset(Powerset(Orders))
which, given a set of set of orders, returns the set of all the sets which have a
maximum quantity.

ASM transition rules
Other strategies to simultaneously invoice a certain number of orders at
a time:

Fourth strategy

rule r_InvoiceMaxOrdersForOneProduct =
 choose $product in Products do
 let ($pending = pendingOrders($product)) in
 let ($invoicablePending = {$o in Powerset($pending) |
 totalQuantity($o) <= stockQuantity($product) : $o}) in
 choose $orderSet in maxQuantitySubsets($invoicablePending) do
 par
 forall $order in $orderSet do
 orderState($order) := INVOICED
 r_DeleteStock[$product, totalQuantity($orderSet)]
 endpar
 endlet
 endlet

ASM transition rules
Another strategy not driven by a first choice of a product: choose a set of
pending orders, with enough referenced products in the stock, to be simultaneously
invoiced.

The predicate invoicable is true on a set of pending orders with enough quantity of
requested products in the stock, and a function refProducts (recursively defined)
yields the set of all products referenced in a set of orders.

Last strategy

rule r_InvoiceOrders =
 choose $orderSet in Powerset(Orders) with invoicable($orderSet) do
 par
 forall $order in $orderSet do
 orderState($order) := INVOICED
 forall $product in referencedProducts($orderSet) do
 r_DeleteStock[$product, totalQuantity($orderSet,$product)]
 endpar

Auxiliary functions

static function
invoicable($so in Powerset(Orders)) : Boolean =
forall $o in $so with orderState($o) = PENDING and
forall $p in Products with totalQuantity($so,$p) <=

stockQuantity($p)

static function
refProducts($so in Powerset(Orders)) : Powerset(Products) =
if (isEmpty($so)) then {}
else let $first = first(asSequence($so) in

including(refProducts(excluding($so,$first)),
referencedProduct($first))

endif

ASM main rule and initial state

/*------- main rule --------*/

main rule r_ordersystem =

r_InvoiceSingleOrder[]

One can assume that all the orders are initially
pending:

default init s_1:

function orderState($o in Orders) = PENDING

ASM signature - Case 2 Domains (changed):
● dynamic abstract domain Orders set of orders - by R1

dynamic by R6b

● enum domain Order_status= {INVOICED|PENDING|CANCELLED}
We assume: cancelled orders are not deleted, but their status changed to
CANCELLED

The domains Orders and Products and all the functions for
case 1 remain.

New Functions:
● dynamic monitored newOrders: Seq(Prod(Products,Quantity))

the sequence of orders to add (a sequence of pairs product and quantity)

● dynamic monitored ordersToCancel: Seq(Orders) the sequence of
orders to cancel, and

● dynamic monitored newItems: Seq(Prod(Products,Quantity))
the new quantities to add in the stock (sequence of pairs product and
quantity)

ASM rules - Case 2 New rules:

Besides the action of invoicing an order, R6b
introduces other three operations:

(1) cancellation of orders r_CancelOrders,

(2) insertion of new orders r_AddOrders,

(3) addition of quantities of products in the stock
 r_AddItems.

We assume that these operations are driven by the
three new monitored functions.

ASM rules - Case 2

 New rule:
/*--- cancellation of orders ---*/
rule r_CancelOrders =

 forall $order in asSet(ordersToCancel) do
 orderState($order) := CANCELLED

ASM rules - Case 2
 New rule:

/* --- incoming orders --- */
rule r_AddOrders =
 forall $pair in asSet(newOrders) do
 let ($product = first($pair),
 $quantity = second($pair)) in

 extend Orders with $order do
 par

referencedProduct($order):= $product
orderQuantity($order):= $quantity
orderState($order):= PENDING

 endpar
 endlet

ASM rules - Case 2

 New rule:
/*--- inserting new items in stock ---*/
rule r_AddItems =

forall $item in asSet(newItems) do
 let ($product = first($item),

 $quantity = second($item)) in
 stockQuantity($product) :=

 stockQuantity($product) + $quantity
endlet

ASM main rule - Case 2

 /*------- main rule --------*/

main rule r_ordersystem2 =
seq
 par
 r_AddOrders[]
 r_CancelOrders[]
 r_AddItems[]
 endpar
 r_InvoiceSingleOrder[]
endseq

N.B. r_InvoiceSingleOrder updates the functions orderState and
stockQuantity, hence it cannot be executed in parallel with rules
CancelOrders and AddItems.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

