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Hoare Logic with Updates
• We will use a non-standard formulation of Hoare 

logic called “Hoare Logic with Updates". 
– With this formulation one more thing is included in the 

Hoare triple, namely an update which corresponds to the 
changes to the program state that have occurred “so far". 

• The update which does not contain any substitutions is 
denoted by []. 

• A normal Hoare triple {P}S{Q}, can easily be 
translated to the corresponding Hoare triple with 
updates, namely {P}[]S{Q}.

• In addition to these slides, you can read the paper 
“Hoare-Style Calculus with Explicit State Updates" 
by Hahnle and Bubel.

• http://www.cs.chalmers.se/Cs/Grundutb/Kurser/prove/key-hoare.pdf



  

Updates
• Updates in U collect the assignments

– We write single substitutions on the form x := e. 
– Multiple substitutions are denoted as follows:

[x1 := e1, x2 := e2, ..., xn := en]

• The meaning of
– [x1 := e1, x2 := e2, ..., xn := en](P)
– is the formula you get by first substituting xn by en in P, 

then x(n-1) by e(n-1) and so forth until the first 
substitution, x1 := e1 has been performed



  

Example
[x:=x+1, x := x * 3, x := x - 5] x = 13

• yields
[x := x + 1, x := x * 3] x - 5 = 13
[x := x + 1] x * 3 - 5 = 13
(x + 1)* 3 - 5 = 13

• Simplify
x = 5



  

Rules
The inference rules describe a straight-forward 
strategy for dividing the program into smaller pieces 
until only plain logical formulas are left.
Each rule has the form
                       P1, P2, ... Pn
Rulename -------------------------------
                       {P}[U] S{Q}

You always apply the rule by matching the Hoare 
triple below the line to the current Hoare triple. The 
rule turns your current problem into n new problems, 
each being either a Hoare triple or a logical formula.



  

Assignment Rule
• Let's start with the rule for assignment statements. 

Since we are using updates, this is really simple.

                            {P}[U, x:=e] s {Q}
Assignment  --------------------------------
                             {P}[U] x:=e; s {Q}

• The rule  says: given a Hoare triple with update, if 
the program starts with an assignment, then turn it 
into a substitution and put it at the end of the 
update.



  

Rules
• All the rules (except exit) are applied at the first 

statement of the program

                 {P1}[U1]S2{Q}, ...{Pn}[Un]S2{Q}
Rulename -----------------------------------------------------
                    {P}[U] S1;    S2   {Q}



  

Exit rule
• With a program consisting only of assignments, we 

can apply the assignment rule repeatedly until no 
statements remain. We then have a Hoare triple of 
the form

{P}[U]{Q}

In order to turn this into a logical formula we must 
have a rule that performs the substitutions recorded 
in U 

                            P  U(Q)→
exit                 --------------------------------
                             {P}[U]{Q}
U(Q):apply the updates in U in Q



  

Example
{x = 5}
[]
x = x + 1;
x = x * 3;
x = x - 5;
{x = 13}

• Apply the assignment rule
• ....
• {x=5}[]
•  → nel tool



  

Key-hoare
• In KeY-Hoare you have to manually apply the 

inference rules (assignment, conditional, loop and 
exit). To do that you press the right button when 
everything but the precondition of the Hoare triple 
is highlighed. Sometimes you may also have to 
apply `remove block’ when you have a empty 
block at the beginning of the program. Once you 
have chosen `exit’ you have a logical formula. 
Logical formulas can be proved automatically by 
choosing “Apply rules automatically here". We 
recommend that you do this rather than manually 
proving formulas. You can choose automatic as 
soon as the Hoare triple is gone



  

Swap example in Key_hoare
• In order to do the verication in the tool, we have to 

declare the variables. 
\functions{ 

   int x0; 

   int y0; 

} 

\programVariables{ 

   int x,y, d; 

} 

\hoare{ { x = x0&y = y0 } 

\[{  d = x; 

      x = y; 

      y = d; }\] 

{ x = y0&y = x0 } } 



  

\functions{ 

   ....

} 

\programVariables{ 

   int x,y, d; 

} 

\hoare{ 

{ .... } 

[ … ]

\[{  ....  }\] 

{...} 

} 

Fixed values (inputs)

Variables used by the program

Hare triple: precondition, 
Updates (usually to the inputs)

Program
posconditions



  

Conditional
The conditional rule is applied when the rst 
statement in the program is an if-statement.

                         {P & U(b)}[U]s1;s{Q},  {P & not U(b)}[U]s2;s {Q}

Conditional      --------------------------------------------------------------------

                                   {P}[U] if (b) s1 else s2;  s {Q}

The rule says that if the program starts with an if-statement, then 
proving the Hoare triple amounts to proving it for the program that 
corresponds to the then part and the program that corresponds to the

else-part. We get two new proof obligations since there are two 
possible paths that the program is executed, and our specication must 
hold in both cases. The rest of the program, s, is appended to both the 
then and the else-part. This is natural since in both cases the execution 
will continue after the if-statement.



  

Esempio MAX



  

While cycles



  

A first example
Let's look at the simplest possible example where we 
don't know how many times the loop will be 
repeated.

{ n >= 0 }
    while (n > 0) {
    n = n - 1;
}
{ n = 0 }



  

While example
{ n >= 0 }

while (n > 0) {

n = n - 1;

}

{ n = 0 }

• After the execution of the while loop has finished we know that n 
<= 0 (since the condition n > 0 evaluated to false).

• But that is not enough to conclude the postcondition, n = 0.

• Looking at the precondition, n >= 0, we see that if we also had this 
after the loop, then we could conclude the postcondition

(n <= 0 & n >= 0 implies n = 0).

• In order to have this, we need to show that if n >= 0 holds before 
the loop, then the same thing also holds after it.

• We can do this by showing that if n >= 0 holds before executing the 
loop body, it also holds after the loop body.



  

While example
{n >= 0 }
while (n > 0) {
n = n - 1;
}
{ n = 0 }
• We say that the constraint n >= 0 should be preserved when executing the 

loop body.
• If it does we call it a loop invariant(it doesn't vary between each repetition of 

the loop).
• Once we've shown that the constraint is preserved by the loop we can use 

arguments of induction to conclude that regardless of the number of times the 
loop is repeated, the loop invariant will hold after the loop if it held before it.



  

While statement
• Elements of proving a loop correct
1. Come up with some constraint, I , which is 
hopefully a loop invariant.
2. Show that I holds before the loop, ie. I is initially 
valid.
3. Show that I is preserved by the loop, ie. if it holds 
before an execution of the loop body, then it holds 
after. When showing this can also assume the loop 
condition to be true (otherwise the loop would have 
stopped).



  

invariants
4. Show that if I is valid after the loop, then after 
executing the rest of the program, the postcondition 
will be valid. 

– In other words, when proving that the rest of the program 
is correct we can use the invariant. Apart from using the 
invariant, we can also assume the loop condition to be 
false right after the loop (otherwise the loop would have 
continued).



  

Loop rule

         P  U(I), {I and b}S{I}, {I and not b}[]s2{Q}→
loop rule ------------------------------------------------------
                             {P}[U]while b do S od s2{Q}

I: invariant

The rule creates three new proof obligations. As we have seen, 
this rule differs from the others in that it requires you to invent 
something new, namely the loop invariant I . I doesn't appear 
anywhere below the inference line, so it cannot be directly read o 
the current Hoare triple.



  

Loop rule

         P  U(I), {I and b}S{I}, {I and not b}[]s2{Q}→
loop rule ------------------------------------------------------
                             {P}[U]while b do S od s2{Q}

• The new proof obligations are (names refer to what 
appears in the KeY-Hoare proof tree):
P  U(I)→

• Invariant Initially Valid - The invariant must hold at 
the beginning of the loop. This means it must be a 
consequence of P, hence the implication. Just as in 
the exit rule, the eects of the update, U, must be 
reflected in the consequent.



  

{I and b}S{I}
• Preserves Invariant - If the invariant holds before 

executing the loop body, it should hold afterwards. 
The Hoare triple has an empty update, 
corresponding to the fact the U was already 
applied before the loop, in the “Invariant Initially 
Valid". The changes to the program state before 
the loop are already reflected in I . Just as we could 
assume that the guard evaluated to true in the 
then-branch of the conditional statement, we can
here add the same assumption when entering the 
loop body.



  

{I and not b}[]s2{Q}
• Use invariant – By inductive reasoning we can now 

assume that I holds after the loop. And we also 
have that b is false (loop exit). These two thing 
form the precondition in the Hoare triple for the 
rest of the program



  

A first example
{n >= 0 }
while (n > 0) {
n = n - 1;
}
{ n = 0 }

Invariant: n>=0 !!!
Proviamo con il tool



  

Esempio: divisione intera

{x>=0 /\ y>=0}
a:=0;
b:=x;
while b>=y do
   b:=b-y;
   a:=a+1
od.
{x=a*y+b /\ 0<=b /\ b<y}

Invariante
x=a*y+b /\ b>=0

calcola a = x/y e b il resto (x mod y)



  

Dimostrazione

{x>=0 /\ y>=0}
a:=0;
b:=x;
{I}
while b>=y do
   b:=b-y;
   a:=a+1
od.
{x=a*y+b /\ 0<=b /\ b<y}

divido in due 
la dimostrazione 1

2
prendo P del ciclo 
while esattamente
 uguale a I
(cond 3 su I è OK)

1 applico assegnamento 



  

Dimostrazione parte 1

(1) {x=a*y+x/\x>=0}   b:=x {x=a*y+b/\b>=0}   
(Assignment)

(2) {x=0*y+x/\x>=0}  a:=0 {x=a*y+x/\x>=0}   
(Assignment)

(3){x=0*y+x /\x>=0} a:=0;b:=x{x=a*y+b/\x>=0} 
                                                                (Composition 

(2), (1))

{p[y->t]} y:=t {p} {p}S1{r}, {r} S2{q} 
     {p} S1;S2 {q}



  

Proof (cont.)

(4) x>=0/\y>=0 ->   x=0*y+x/\x>=0        (Logic)
(5) {x>=0 /\ y>=0}  a:=0; b:=x  
         {x=a*y+b/\b>=0/\b<y} (Consequence 3 e 

4)

ok quindi 
1

2

{x>=0 /\ y>=0}
a:=0;
b:=x;
{I}

DA FARE



  

parte 2 : ciclo while
• I ha le proprietà degli invarianti?
1 {I /\ not B} -> {Q}: 

l'invariante all'uscita del ciclo implica la postcondizione

2  {I /\ B } S {I} I è effettivamente invariante

3   P -> I : I è valido all'inizio del ciclo OK

Dimostro proprietà 1

{I /\ not B} -> {x=a*y+b /\ 0<=b /\ b<y}

{x = a*y+b /\ b>=0  /\ not b>=y} -> {x=a*y+b /\ 0<=b /\ b<y}

ok perchè not b >= y -> b<y

manca 2: {I /\ B } S {I}
{I /\ B } b:=b-y; a:=a+1{I}



  

Proof (cont.)

(6){x=(a+1)*y+b/\b>=0} a:=a+1{x=a*y+b/\b>=0}   
(Assignment) 

(7){x=(a+1)*y+b-y/\b-y>=0} b:=b-
y{x=(a+1)*y+b/\b>=0} (Assignment)

(8){x=(a+1)*y+b-y/\b-y>=0} b:=b-y;a:=a+1{x=a*y+b/\
b>=0}

      (Composition (6), (7))

{p[t/y]} y:=t {p} {p}S1{r}, {r} S2{q} 
     {p} S1;S2 {q}



  

Proof (cont.)

(9) x=a*y+b/\b>=0/\b>=y ->
            x=(a+1)*y+b-y /\ b-y >= 0 (Logic)
(10) {x=a*y+b/\b>=0/\b>=y}
      b:=b-y; a:=a+1 {x=a*y+b/\b>=0}
            (Consequence (8), (9))
(9) {x=a*y+b/\b>=0}while b>=y do b:=b-y;
      a:=a+1 od {x=a*y+b/\b>=0/\b<y}
            (while (10))



  

Come “intuire” l'invariante
• L'invariante deve implicare all'uscita la 

postcondizione
– Domandati perchè alla fine la post condizione vale?

• Prova a percorrere il ciclo con qualche caso di test, 
con un “giro” del ciclo, con due e così via



  

Come trovare invarianti
Using the experience from the previous examples we can sketch on a general 
plan for how to prove a loop correct:
• Look at the postcondition to see how it could be generalized.
• Perhaps dry-run the loop a few times to see a pattern of what is being 

preserved.
• From this choose a first attempt of the loop invariant.
• Try to prove that it's initially valid, preserved and entails the postcondition.
• While checking invariant preserved and use invariant you might encounter 

necessary extra conditions which you add to the invariant.
• Make sure that the new conditions are also initially valid and preserved.
• Repeat this until the whole proof goes through.



  

Esercizi

{y >= 0}
i = 0;
{I}
quad = 0; 
while ( i != y) {
   quad = quad + y;
   i = i + 1;
}
{quad = y^2}

I = q = i * y

anche in questo caso divido 
la dimostrazione in due parti

questo I è assegnato

nella seconda parte devo dimostrare che 
1) I and not B -> Q
cioè q = i *y AND not (i!=y)
        q = i *y AND i = y  -> q = y*y

OK
2) {I and B}S {I}
{q = i*y and i!=y} q = q+y; i = i+1{...}

da fare



  

Altri esempi
• Esempio 1:somma
{n>0}

count = 0;

sum = 0;

while count < n  do

   count = count + 1;

   sum = sum + count;

end

{sum = 1 +2 + ... + n}

count cresce fino a diventare 
n, e sum accumula la 
somma da 1 a count:

I: sum = 1 + ... + count

• Esempio 2: assegna

{x>=0}
Y:= 0;
while (y < x) {

y:= y+1;
}
{y=x}

Esempio 3
int old_x = x;
int dop = x;
while (x != 0) {
dop := dop +1 ; x := x-1;
}
{dop = 2 *old_x}
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