

Verifica formale di programmi con
Key-Hoare

A.Gargantini

Infomatica III

Unibg 2008

Hoare Logic with Updates
• We will use a non-standard formulation of Hoare

logic called “Hoare Logic with Updates".
– With this formulation one more thing is included in the

Hoare triple, namely an update which corresponds to the
changes to the program state that have occurred “so far".

• The update which does not contain any substitutions is
denoted by [].

• A normal Hoare triple {P}S{Q}, can easily be
translated to the corresponding Hoare triple with
updates, namely {P}[]S{Q}.

• In addition to these slides, you can read the paper
“Hoare-Style Calculus with Explicit State Updates"
by Hahnle and Bubel.

• http://www.cs.chalmers.se/Cs/Grundutb/Kurser/prove/key-hoare.pdf

Updates
• Updates in U collect the assignments

– We write single substitutions on the form x := e.
– Multiple substitutions are denoted as follows:

[x1 := e1, x2 := e2, ..., xn := en]

• The meaning of
– [x1 := e1, x2 := e2, ..., xn := en](P)
– is the formula you get by first substituting xn by en in P,

then x(n-1) by e(n-1) and so forth until the first
substitution, x1 := e1 has been performed

Example
[x:=x+1, x := x * 3, x := x - 5] x = 13

• yields
[x := x + 1, x := x * 3] x - 5 = 13
[x := x + 1] x * 3 - 5 = 13
(x + 1)* 3 - 5 = 13

• Simplify
x = 5

Rules
The inference rules describe a straight-forward
strategy for dividing the program into smaller pieces
until only plain logical formulas are left.
Each rule has the form
 P1, P2, ... Pn
Rulename -------------------------------
 {P}[U] S{Q}

You always apply the rule by matching the Hoare
triple below the line to the current Hoare triple. The
rule turns your current problem into n new problems,
each being either a Hoare triple or a logical formula.

Assignment Rule
• Let's start with the rule for assignment statements.

Since we are using updates, this is really simple.

 {P}[U, x:=e] s {Q}
Assignment --------------------------------
 {P}[U] x:=e; s {Q}

• The rule says: given a Hoare triple with update, if
the program starts with an assignment, then turn it
into a substitution and put it at the end of the
update.

Rules
• All the rules (except exit) are applied at the first

statement of the program

 {P1}[U1]S2{Q}, ...{Pn}[Un]S2{Q}
Rulename ---
 {P}[U] S1; S2 {Q}

Exit rule
• With a program consisting only of assignments, we

can apply the assignment rule repeatedly until no
statements remain. We then have a Hoare triple of
the form

{P}[U]{Q}

In order to turn this into a logical formula we must
have a rule that performs the substitutions recorded
in U

 P U(Q)→
exit --------------------------------
 {P}[U]{Q}
U(Q):apply the updates in U in Q

Example
{x = 5}
[]
x = x + 1;
x = x * 3;
x = x - 5;
{x = 13}

• Apply the assignment rule
•
• {x=5}[]
• → nel tool

Key-hoare
• In KeY-Hoare you have to manually apply the

inference rules (assignment, conditional, loop and
exit). To do that you press the right button when
everything but the precondition of the Hoare triple
is highlighed. Sometimes you may also have to
apply `remove block’ when you have a empty
block at the beginning of the program. Once you
have chosen `exit’ you have a logical formula.
Logical formulas can be proved automatically by
choosing “Apply rules automatically here". We
recommend that you do this rather than manually
proving formulas. You can choose automatic as
soon as the Hoare triple is gone

Swap example in Key_hoare
• In order to do the verication in the tool, we have to

declare the variables.
\functions{

 int x0;

 int y0;

}

\programVariables{

 int x,y, d;

}

\hoare{ { x = x0&y = y0 }

\[{ d = x;

 x = y;

 y = d; }\]

{ x = y0&y = x0 } }

\functions{

}

\programVariables{

 int x,y, d;

}

\hoare{

{ }

[…]

\[{ }\]

{...}

}

Fixed values (inputs)

Variables used by the program

Hare triple: precondition,
Updates (usually to the inputs)

Program
posconditions

Conditional
The conditional rule is applied when the rst
statement in the program is an if-statement.

 {P & U(b)}[U]s1;s{Q}, {P & not U(b)}[U]s2;s {Q}

Conditional --

 {P}[U] if (b) s1 else s2; s {Q}

The rule says that if the program starts with an if-statement, then
proving the Hoare triple amounts to proving it for the program that
corresponds to the then part and the program that corresponds to the

else-part. We get two new proof obligations since there are two
possible paths that the program is executed, and our specication must
hold in both cases. The rest of the program, s, is appended to both the
then and the else-part. This is natural since in both cases the execution
will continue after the if-statement.

Esempio MAX

While cycles

A first example
Let's look at the simplest possible example where we
don't know how many times the loop will be
repeated.

{ n >= 0 }
 while (n > 0) {
 n = n - 1;
}
{ n = 0 }

While example
{ n >= 0 }

while (n > 0) {

n = n - 1;

}

{ n = 0 }

• After the execution of the while loop has finished we know that n
<= 0 (since the condition n > 0 evaluated to false).

• But that is not enough to conclude the postcondition, n = 0.

• Looking at the precondition, n >= 0, we see that if we also had this
after the loop, then we could conclude the postcondition

(n <= 0 & n >= 0 implies n = 0).

• In order to have this, we need to show that if n >= 0 holds before
the loop, then the same thing also holds after it.

• We can do this by showing that if n >= 0 holds before executing the
loop body, it also holds after the loop body.

While example
{n >= 0 }
while (n > 0) {
n = n - 1;
}
{ n = 0 }
• We say that the constraint n >= 0 should be preserved when executing the

loop body.
• If it does we call it a loop invariant(it doesn't vary between each repetition of

the loop).
• Once we've shown that the constraint is preserved by the loop we can use

arguments of induction to conclude that regardless of the number of times the
loop is repeated, the loop invariant will hold after the loop if it held before it.

While statement
• Elements of proving a loop correct
1. Come up with some constraint, I , which is
hopefully a loop invariant.
2. Show that I holds before the loop, ie. I is initially
valid.
3. Show that I is preserved by the loop, ie. if it holds
before an execution of the loop body, then it holds
after. When showing this can also assume the loop
condition to be true (otherwise the loop would have
stopped).

invariants
4. Show that if I is valid after the loop, then after
executing the rest of the program, the postcondition
will be valid.

– In other words, when proving that the rest of the program
is correct we can use the invariant. Apart from using the
invariant, we can also assume the loop condition to be
false right after the loop (otherwise the loop would have
continued).

Loop rule

 P U(I), {I and b}S{I}, {I and not b}[]s2{Q}→
loop rule --
 {P}[U]while b do S od s2{Q}

I: invariant

The rule creates three new proof obligations. As we have seen,
this rule differs from the others in that it requires you to invent
something new, namely the loop invariant I . I doesn't appear
anywhere below the inference line, so it cannot be directly read o
the current Hoare triple.

Loop rule

 P U(I), {I and b}S{I}, {I and not b}[]s2{Q}→
loop rule --
 {P}[U]while b do S od s2{Q}

• The new proof obligations are (names refer to what
appears in the KeY-Hoare proof tree):
P U(I)→

• Invariant Initially Valid - The invariant must hold at
the beginning of the loop. This means it must be a
consequence of P, hence the implication. Just as in
the exit rule, the eects of the update, U, must be
reflected in the consequent.

{I and b}S{I}
• Preserves Invariant - If the invariant holds before

executing the loop body, it should hold afterwards.
The Hoare triple has an empty update,
corresponding to the fact the U was already
applied before the loop, in the “Invariant Initially
Valid". The changes to the program state before
the loop are already reflected in I . Just as we could
assume that the guard evaluated to true in the
then-branch of the conditional statement, we can
here add the same assumption when entering the
loop body.

{I and not b}[]s2{Q}
• Use invariant – By inductive reasoning we can now

assume that I holds after the loop. And we also
have that b is false (loop exit). These two thing
form the precondition in the Hoare triple for the
rest of the program

A first example
{n >= 0 }
while (n > 0) {
n = n - 1;
}
{ n = 0 }

Invariant: n>=0 !!!
Proviamo con il tool

Esempio: divisione intera

{x>=0 /\ y>=0}
a:=0;
b:=x;
while b>=y do
 b:=b-y;
 a:=a+1
od.
{x=a*y+b /\ 0<=b /\ b<y}

Invariante
x=a*y+b /\ b>=0

calcola a = x/y e b il resto (x mod y)

Dimostrazione

{x>=0 /\ y>=0}
a:=0;
b:=x;
{I}
while b>=y do
 b:=b-y;
 a:=a+1
od.
{x=a*y+b /\ 0<=b /\ b<y}

divido in due
la dimostrazione 1

2
prendo P del ciclo
while esattamente
 uguale a I
(cond 3 su I è OK)

1 applico assegnamento

Dimostrazione parte 1

(1) {x=a*y+x/\x>=0} b:=x {x=a*y+b/\b>=0}
(Assignment)

(2) {x=0*y+x/\x>=0} a:=0 {x=a*y+x/\x>=0}
(Assignment)

(3){x=0*y+x /\x>=0} a:=0;b:=x{x=a*y+b/\x>=0}
 (Composition

(2), (1))

{p[y->t]} y:=t {p} {p}S1{r}, {r} S2{q}
 {p} S1;S2 {q}

Proof (cont.)

(4) x>=0/\y>=0 -> x=0*y+x/\x>=0 (Logic)
(5) {x>=0 /\ y>=0} a:=0; b:=x
 {x=a*y+b/\b>=0/\b<y} (Consequence 3 e

4)

ok quindi
1

2

{x>=0 /\ y>=0}
a:=0;
b:=x;
{I}

DA FARE

parte 2 : ciclo while
• I ha le proprietà degli invarianti?
1 {I /\ not B} -> {Q}:

l'invariante all'uscita del ciclo implica la postcondizione

2 {I /\ B } S {I} I è effettivamente invariante

3 P -> I : I è valido all'inizio del ciclo OK

Dimostro proprietà 1

{I /\ not B} -> {x=a*y+b /\ 0<=b /\ b<y}

{x = a*y+b /\ b>=0 /\ not b>=y} -> {x=a*y+b /\ 0<=b /\ b<y}

ok perchè not b >= y -> b<y

manca 2: {I /\ B } S {I}
{I /\ B } b:=b-y; a:=a+1{I}

Proof (cont.)

(6){x=(a+1)*y+b/\b>=0} a:=a+1{x=a*y+b/\b>=0}
(Assignment)

(7){x=(a+1)*y+b-y/\b-y>=0} b:=b-
y{x=(a+1)*y+b/\b>=0} (Assignment)

(8){x=(a+1)*y+b-y/\b-y>=0} b:=b-y;a:=a+1{x=a*y+b/\
b>=0}

 (Composition (6), (7))

{p[t/y]} y:=t {p} {p}S1{r}, {r} S2{q}
 {p} S1;S2 {q}

Proof (cont.)

(9) x=a*y+b/\b>=0/\b>=y ->
 x=(a+1)*y+b-y /\ b-y >= 0 (Logic)
(10) {x=a*y+b/\b>=0/\b>=y}
 b:=b-y; a:=a+1 {x=a*y+b/\b>=0}
 (Consequence (8), (9))
(9) {x=a*y+b/\b>=0}while b>=y do b:=b-y;
 a:=a+1 od {x=a*y+b/\b>=0/\b<y}
 (while (10))

Come “intuire” l'invariante
• L'invariante deve implicare all'uscita la

postcondizione
– Domandati perchè alla fine la post condizione vale?

• Prova a percorrere il ciclo con qualche caso di test,
con un “giro” del ciclo, con due e così via

Come trovare invarianti
Using the experience from the previous examples we can sketch on a general
plan for how to prove a loop correct:
• Look at the postcondition to see how it could be generalized.
• Perhaps dry-run the loop a few times to see a pattern of what is being

preserved.
• From this choose a first attempt of the loop invariant.
• Try to prove that it's initially valid, preserved and entails the postcondition.
• While checking invariant preserved and use invariant you might encounter

necessary extra conditions which you add to the invariant.
• Make sure that the new conditions are also initially valid and preserved.
• Repeat this until the whole proof goes through.

Esercizi

{y >= 0}
i = 0;
{I}
quad = 0;
while (i != y) {
 quad = quad + y;
 i = i + 1;
}
{quad = y^2}

I = q = i * y

anche in questo caso divido
la dimostrazione in due parti

questo I è assegnato

nella seconda parte devo dimostrare che
1) I and not B -> Q
cioè q = i *y AND not (i!=y)
 q = i *y AND i = y -> q = y*y

OK
2) {I and B}S {I}
{q = i*y and i!=y} q = q+y; i = i+1{...}

da fare

Altri esempi
• Esempio 1:somma
{n>0}

count = 0;

sum = 0;

while count < n do

 count = count + 1;

 sum = sum + count;

end

{sum = 1 +2 + ... + n}

count cresce fino a diventare
n, e sum accumula la
somma da 1 a count:

I: sum = 1 + ... + count

• Esempio 2: assegna

{x>=0}
Y:= 0;
while (y < x) {

y:= y+1;
}
{y=x}

Esempio 3
int old_x = x;
int dop = x;
while (x != 0) {
dop := dop +1 ; x := x-1;
}
{dop = 2 *old_x}

	Program Verification Using Hoare’s Logic Book: Chapter 7
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Another example
	Slide 27
	Proof
	Slide 29
	Slide 30
	Proof (cont.)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

