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Origins of the language

• James Gosling and others at Sun, 1990 - 95

• Oak language for “set-top box”
– small networked device with television display

• graphics
• execution of simple programs
• communication between local program and remote 

site
• no “expert programmer” to deal with crash, etc.

• Internet application
– simple language for writing programs that can be 

transmitted over network



  

Design Goals

• Portability
– Internet-wide distribution:  PC, Unix, Mac 

• Reliability
– Avoid program crashes and error messages

• Safety
– Programmer may be malicious

• Simplicity and familiarity
– Appeal to average programmer; less complex than C++

• Efficiency 
– Important but secondary



  

General design decisions

• Simplicity
– Almost everything is an object

– All objects on heap, accessed through pointers

– No functions, no multiple inheritance, no go to, no 
operator overloading, few automatic coercions 

• Portability and network transfer
– Bytecode interpreter on many platforms

• Reliability and Safety
– Typed source and typed bytecode language

– Run-time type and bounds checks

– Garbage collection



  

Java System

• The Java programming language 

• Compiler and run-time system
– Programmer compiles code

– Compiled code transmitted on network

– Receiver executes on interpreter (JVM)

– Safety checks made before/during execution

• Library, including graphics, security, etc.
– Large library made it easier for projects to adopt Java

– Interoperability
• Provision for “native” methods



  

Java Release History

• 1995 (1.0) – First public release

• 1997 (1.1) – Nested classes
– Support for function objects

• 2001 (1.4) – Assertions
– Verify programmers understanding of code

• 2004 (1.5) – Tiger
– Generics, foreach, Autoboxing/Unboxing,

– Typesafe Enums, Varargs, Static Import, 

– Annotations, concurrency utility library

• 2006 (1.6) - Mustang

Improvements through Java Community Process



  

Enhancements in JDK 5 (= Java 1.5) 
• Generics

– polymorphism and compile-time type safety 
• Enhanced for Loop

– for iterating over collections and arrays
• Autoboxing/Unboxing

– automatic conversion between primitive, wrapper types 
• Typesafe Enums

– enumerated types with arbitrary methods and fields  
• Varargs

– puts argument lists into an array; variable-length 
argument lists 

• Static Import
– avoid qualifying static members with class names 

• Annotations (Metadata)
– enables tools to generate code from annotations (JSR 175)

• Concurrency utility library, led by Doug Lea (JSR-166) 



  

Outline

• Objects in Java
– Classes, encapsulation, inheritance

◆ Type system
• Primitive types, interfaces, arrays, exceptions

◆ Generics (added in Java 1.5)
• Basics, wildcards, …

◆ Virtual machine
• Loader, verifier, linker, interpreter
• Bytecodes for method lookup

◆ Security issues



  

Language Terminology

• Class, object  - as in other languages

• Field – data member 

• Method - member function
• Static members - class fields and methods
• this - self
• Package - set of classes in shared namespace

• Native method - method written in another 
language, often C



  

Java Classes and Objects

• Syntax similar to C++

• Object 
– has fields and methods

– is allocated on heap, not run-time stack

– accessible through reference (only ptr assignment)

– garbage collected

• Dynamic lookup
– Similar in behavior to other languages

– Static typing => more efficient than Smalltalk

– Dynamic linking, interfaces => slower than C++



  

Point Class

class Point {

    static public Point O = new Point(0);

    private int x;

    protected void setX (int y)  {x = y;}

    public int  getX()     {return x;}

    Point(int xval) {x = xval;}       // constructor

}

– Visibility similar to C++, but not exactly (later slide)



  

Object initialization

• Java guarantees constructor call for each object
– Memory allocated

– Constructor called to initialize memory

– Some interesting issues related to inheritance 
                                                      We’ll discuss later …

• Cannot do this (would be bad C++ style anyway):
– Obj* obj = (Obj*)malloc(sizeof(Obj));

• Static fields of class initialized at class load time
– Talk about class loading later



  

Garbage Collection and Finalize

• Objects are garbage collected
– No explicit free

– Avoids dangling pointers and resulting type errors

• Problem
– What if object has opened file or holds lock?

• Solution
– finalize  method, called by the garbage collector 

• Before space is reclaimed, or when virtual machine 
exits

• Space overflow is not really the right condition to 
trigger finalization when an object holds a lock...)

– Important convention: call super.finalize



  

Encapsulation and packages

• Every field, method 
belongs to a class

• Every class is part of 
some package
– Can be unnamed default 

package

– File declares which 
package code belongs to

package

class
field

method

package

class
field

method



  

Visibility and access

• Four visibility distinctions
– public, private, protected, package

• Method can refer to
– private members of class it belongs to

– non-private members of all classes in same package

– protected members of superclasses (in diff package)

– public members of classes in visible packages
Visibility determined by files system, etc. (outside 

language)

• Qualified names  (or use import)
– java.lang.String.substring()

package class method



  

Inheritance

• Similar to Smalltalk, C++

• Subclass inherits from superclass
– Single inheritance only (but Java has interfaces)

• Some additional features
– Conventions regarding super  in constructor and finalize 

 methods

– Final classes and methods



  

Example subclass

class ColorPoint extends Point {

   // Additional fields and methods

    private Color c;

    protected void setC (Color d)  {c = d;}

    public Color  getC()     {return c;}

   // Define constructor

    ColorPoint(int xval, Color cval) {

         super(xval);    // call Point constructor

         c = cval;  }     // initialize ColorPoint field

 }



  

Class Object

• Every class extends another class
– Superclass is Object if no other class named

• Methods of class Object
– getClass – return the Class object representing class of 

the object 
– toString – returns string representation of object

– equals – default object equality (not ptr equality)

– hashCode 
– clone – makes a duplicate of an object
– wait, notify, notifyAll – used with concurrency
– finalize



  

Constructors and Super

• Java guarantees constructor call for each object

• This must be preserved by inheritance
– Subclass constructor must call super constructor

• If first statement is not call to super, then call super() 
 inserted automatically by compiler

• If superclass does not have a constructor with no 
args,  then this causes compiler error (yuck) 

• Exception to rule: if one constructor invokes another, 
then it is responsibility of second constructor to call 
super, e.g.,

 ColorPoint() { ColorPoint(0,blue);}

   is compiled without inserting call to super 

• Different conventions for finalize and super
•  Compiler does not force call to super finalize



  

Final classes and methods

• Restrict inheritance
– Final classes and methods cannot be redefined

• Example
   java.lang.String

• Reasons for this feature
– Important for security

• Programmer controls  behavior of all subclasses
• Critical because subclasses produce subtypes

– Compare to C++ virtual/non-virtual
• Method is “virtual” until it becomes final



  

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

◆ Generics (added in Java 1.5)
• Basics, wildcards, …

◆ Virtual machine
• Loader, verifier, linker, interpreter
• Bytecodes for method lookup

◆ Security issues



  

Java Types
• Two general kinds of times

– Primitive types – not objects
• Integers, Booleans, etc

– Reference types
• Classes, interfaces, arrays
• No syntax distinguishing  Object * from Object

• Static type checking
– Every expression has type, determined from its parts
– Some auto conversions, many casts are checked at run 

time
– Example, assuming  A <: B (A sottotipo di B)

• Can use A x and type  
• If B x, then can try to cast x to A
• Downcast checked at run-time, may raise exception



  

Classification of Java types

Reference Types

Primitive Types

int

Shape

Object[ ]

Object

Shape[ ]

boolean …

Throwable

Square Square[ ]Circle Circle[ ]

longfloatbyte

Exception 
types

user-defined arrays



  

Subtyping

• Primitive types
– Conversions: int -> long, double -> long,  …

• Class subtyping similar to C++
– Subclass produces subtype
– Single inheritance => subclasses form tree

• Interfaces
– Completely abstract classes

• no implementation

– Multiple subtyping
• Interface can have multiple subtypes (extends, 

implements)

• Arrays
– Covariant subtyping – not consistent with semantic 

principles



  

Java class subtyping

• Signature Conformance 
– Subclass method signatures must conform to those of 

superclass 

• Three ways signature could vary
– Argument types
– Return type 
– Exceptions
   How much conformance is needed in principle? 

• Java rule 
– Java 1.1: Arguments and returns must have identical 

types, may remove exceptions 
– Java 1.5: covariant return type specialization



  

Covariance
• Covariance means that arguments, return values, or 

exceptions of overriding methods can be of subtypes 
of the original types.

• In Java 5 Parameter types have to be exactly the 
same (invariant) for method overriding, otherwise the 
method is overloaded with a parallel definition 
instead.

class A {

  public A whoAreYou() {...}

}

class B extends A {

  // override A.whoAreYou *and* narrow the return type.

  public B whoAreYou() {...}

}



  

Interface subtyping: example

interface Shape {
public float center();

   public void rotate(float degrees);
}
interface Drawable {

public void setColor(Color c);
   public void draw();
}
class Circle implements Shape, Drawable {

// does not inherit any implementation
   // but must define Shape, Drawable methods 
}



  

Properties of interfaces

• Flexibility
– Allows subtype graph instead of tree

– Avoids problems with multiple inheritance of 
implementations (remember C++ “diamond”)

• Cost
– Offset in method lookup table not known at compile 

– Different bytecodes for method lookup
• one when class is known
• one when only interface is known

– search for location of method
– cache for use next time this call is made (from this 

line)



  

Overload vs Override
• Overlod = più metodi o costruttori con lo stesso 

nome ma diversa segnatura
– Segnatura: nome del metodo e lista dei tipi dei suoi 

argomenti

• L'overloading viene risolto in fase di compilazione
•
public static double valoreAssoluto(double x) {
if (x > 0) return x;
else return -x;
}
public static int valoreAssoluto(int x) {
return (int) valoreAssoluto((double) x);



  

Compilazione: scelta segnatura
• In compilazione viene scelta la segnatura del 

metodo da eseguire in base:
(1) al tipo del riferimento utilizzato per invocare il 

metodo
(2) al tipo degli argomenti indicati nella chiamata

Esempio 
• A r;...
• r.m(2)
• Il compilatore cerca fra tutte le segnature di 

metodi di nome m disponibili per il tipo A quella 
“più adatta” per gli argomenti specificati



  

Esempio
A r;
...
r.m(2)
• Se le segnature disponibili per il tipo A sono:
int m(byte b)
int m(long l)
int m(double d)
• il compilatore sceglie la seconda



  

Overriding
• Quando si riscrive in una sottoclasse un metodo 

della superclasse con la stessa segnatura.
• L’overriding viene risolto in fase di esecuzione
• Compilazione:
• scelta della segnatura: il compilatore stabilisce la 

segnatura del metodo da eseguire (early binding)
• Esecuzione:
• scelta del metodo: Il metodo da eseguire, tra quelli 

con la segnatura selezionata, viene scelto al 
momento dell’esecuzione, sulla base del tipo 
dell’oggetto (late binding)



  

Fase di compilazione
(1) Scelta delle segnature “candidate”
• Il compilatore individua le segnature che possono 

soddisfare la chiamata
– (a) compatibile con gli argomenti utilizzati nella chiamata

il numero dei parametri nella segnatura `e uguale al numero 
degli argomenti utilizzati ogni argomento `e di un tipo 
assegnabile al corrispondente parametro

– (b) accessibile al codice chiamante

• Se non esistono segnature candidate, il 
compilatore segnala un errore.

(2) Scelta della segnatura “pi`u specifica”
• Tra le segnature candidate, il compilatore 

seleziona quella che richiede il minor numero di 
promozioni



  

Esempio 1
A alfa;
- alfa.assegna(2)
Una segnatura candidata: 

assegna(long x)
- alfa.assegna(2.0)
Nessuna segnatura 

candidata (errore)

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)



  

Esempio 2
B beta;
beta.assegna(2)
Tre segnature candidate:
• assegna(int x)
• assegna(double x)
• assegna(long x)
• La pi`u specifica `e 

assegna(int x)

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)



  

Ambiguità
• Se per l’invocazione:
• z(1, 2)
• le segnature candidate sono:
• z(double x, int y)
• z(int x, double y)
• Il compilatore non `e in grado di individuare la 

segnatura pi`u specifica e segnala un messaggio di 
errore



  

Esecuzione: scelta del metodo
• La JVM sceglie il metodo da eseguire sulla base del 

tipo dell’oggetto usato nell’invocazione 
– cerca un metodo con la segnatura selezionata in 

fase di compilazione 
– risalendo la gerarchia delle classi a partire dalla 

classe dell’oggetto che deve eseguire il metodo



  

Esempio 1
A alfa = new C()
alfa.assegna(2)
Una segnatura candidata: 

assegna(long x)

Ricerca a partire da C un 
metodo assegna(long)

Esegue il metodo di A 
anche se 2 è int !!!

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)



  

Esempio 2
B beta = new C()
beta.assegna(2)
segnatura selezionata: 

assegna(int x)

Ricerca a partire da C un 
metodo assegna(int)

Esegue il metodo di C

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)



  

Attenzione
• Quando si ridefiniscono i metodi in java bisogna 

usare la stessa segnatura !!
• Vedi il problema con equals
•
class A { int x; A(int y){x = y;} 
   public equals(A a){ return (x == a.x);} }

Object a1 = new A(3);
A a2 = new A(3);
a1.equals(a2);



  

Array types

• Automatically defined
– Array type T[ ] exists for each class, interface type T

– Cannot extended array types (array types are final)

– Multi-dimensional arrays as arrays of arrays: T[ ] [ ]

• Treated as reference type
– An array variable is a pointer to an array, can be null

– Example: Circle[] x = new Circle[array_size]

– Anonymous array expression: new int[] {1,2,3, ... 10}

• Every array type is a subtype of Object[ ],  Object
– Length of array is not part of its static type



  

Array subtyping - covariance

• Covariance
– if  S <: T  then  S[ ] <: T[ ]

• S <:T means “S is subtype of T”

• Standard type error
class A {…}

class B extends A {…}

B[ ] bArray = new B[10]
A[ ] aArray = bArray    // considered OK since B[] <: A[]
aArray[0] = new A()    // compiles, but run-time error

                                    // raises ArrayStoreException
// b/c aArray actually refers to an array of B objects
// so that assignment, aArray[0] = new A(); would violate 

the type of bArray



  

Covariance problem again …

• Remember Simula problem
– If A <: B, then A ref <: B ref

– Needed run-time test to prevent bad assignment

– Covariance for assignable cells is not right in principle

• Explanation
– interface of “T reference cell” is

   put :       T → T ref
   get :  T ref → T

– Remember covariance/contravariance of functions



  

Afterthought on Java arrays

Date: Fri, 09 Oct 1998 09:41:05 -0600
From: bill joy
Subject: …[discussion about java genericity] 

actually, java array covariance was done for less noble reasons 
…: it made some generic "bcopy" (memory copy) and like 
operations much easier to write... 
I proposed to take this out in 95, but it was too late (...).
i think it is unfortunate that it wasn't taken out... 
it would have made adding genericity later much cleaner, and 
[array covariance] doesn't pay for its complexity today.

wnj



  

But compare this to C++!!

• Access by pointer: you can't do array subtyping.
B* barr[15];

A* aarr[] = barr;   // not allowed

• Direct naming: allowed, but you get garbage !!
B barr[15];

A aarr[] = barr;

aarr[k] translates to  *(aarr+sizeof(A)*k) 
barr[k] translates to *(barr+sizeof(B)*k) 
If sizeof(B) != sizeof(A),  you just grab random 
bits.  

     Is there any sense to this?



  

Java Exceptions

• Similar basic functionality to ML, C++ 
– Constructs to throw and catch exceptions

– Dynamic scoping of handler

• Some differences
– An exception is an object from an exception class

– Subtyping between exception classes
• Use subtyping to match type of exception or pass it 

on … 
• Similar functionality to ML pattern matching in 

handler

– Type of method includes exceptions it can throw
• Actually, only subclasses of Exception (see next 

slide)



  

Exception Classes

• If a method may throw a checked exception, then 
this must be in the type of the method

Throwable

Exception Runtime
Exception

Error

User-defined
exception classes

Unchecked exceptions

checked 
exceptions



  

Try/finally blocks

• Exceptions are caught in try blocks
try {

statements

} catch (ex-type1 identifier1) {

statements

} catch (ex-type2 identifier2) {

statements

} finally {

statements

}

• Implementation: finally compiled to jsr



  

Why define new exception 
types?

• Exception may contain data
– Class Throwable includes a string field so that cause of 

exception can be described

– Pass other data by declaring additional fields or 
methods

• Subtype hierarchy used to catch exceptions
catch <exception-type> <identifier> { … } 

will catch any exception from any subtype of exception-
type and bind object to identifier



  

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

• Generics (added in Java 1.5)
– Basics, wildcards, …

◆ Virtual machine
◆

• Loader, verifier, linker, interpreter
• Bytecodes for method lookup

◆ Security issues



  

Java Generic Programming

• Java has class Object
– Supertype of all object types

– This allows “subtype polymorphism”
• Can apply operation on class T to any subclass S <: T

• Java 1.0 – 1.4  do not have templates 
– No parametric polymorphism

– Many consider this the biggest deficiency of Java

• Java type system does not let you cheat
– Can cast from supertype to subtype

– Cast is checked at run time



  

Example generic construct: 
Stack

• Stacks possible for any type of object
– For any type t, can have type stack_of_t

– Operations push,  pop work for any type

• In C++, would write generic stack class
template <type t> class Stack {

private: t data;  Stack<t> * next;
public: void    push (t* x) { … }

                    t*  pop   (     ) { … } 
};

• What can we do in Java?



  

Java 1.0        vs   Generics
class Stack {
  void push(Object o)  { ... }
  Object pop() { ... }
  ...}

String s = "Hello";
Stack st = new Stack(); 
...
st.push(s);
...
s = (String) st.pop();

class Stack<A> {
  void push(A a) { ... }
  A pop() { ... }
  ...}

String s = "Hello";
Stack<String> st = 
        new  

Stack<String>();
st.push(s);
...
s = st.pop();



  

Why no generics in early Java ?

• Many proposals

• Basic language goals seem clear

• Details take some effort to work out
– Exact typing constraints

– Implementation 
• Existing virtual machine?
• Additional bytecodes?
• Duplicate code for each instance?
• Use same code (with casts) for all instances

Java Community proposal (JSR 14) incorporated into Java 1.5



  

 Java Generics   (Java 1.5, “Tiger”) 

• Adopts syntax on previous slide

• Adds auto boxing/unboxing

User conversion                    Automatic conversion

Stack<Integer> st = 
     new  Stack<Integer>();
st.push(new Integer(12));
...
int i = 

(st.pop()).intValue();

Stack<Integer> st = 
     new  

Stack<Integer>();
st.push(12);
...
int i = st.pop();



  

Java generics are type checked

• A generic class may use operations on objects of 
a parameter type
– Example: PriorityQueue<T> …     if  x.less(y) then …

• Two possible solutions
– C++: Link and see if all operations can be resolved

– Java: Type check and compile generics w/o linking
• This requires programmer to give information about 

type parameter
• Example: PriorityQueue<T extends ...> 



  

Constraints on generic types
• One can introduce constraints over a type used as 

parameter in a generic class

< E extends T> : E must be a subtype of T
< E super  T> : E must be a supertype of T



  

Example: Hash Table

interface Hashable {
int HashCode ();

};
class HashTable < Key extends Hashable, Value> 

{
void Insert (Key k, Value v) {

int bucket = k.HashCode();
InsertAt (bucket, k, v);

}
… 

};
This expression must typecheck

Use “Key extends Hashable”



  

Interface Comparable<T>
• imposes a total ordering on the objects of each 

class that implements it (natural ordering)
• int compareTo(T o):  comparison method

– compares this object with o  and returns a negative 
integer, zero, or a positive integer as this object is less 
than, equal to, or greater than the specified object.

• Lists (and arrays) of objects that implement this 
interface can be sorted automatically by 
Collections.sort (and Arrays.sort). 

• Objects that implement this interface can be used 
as keys in a sorted map or elements in a sorted 
set, without the need to specify a comparator.



  

compareTo
• The natural ordering for a class C is said to be 

consistent with equals if and only if 
(e1.compareTo((Object)e2) == 0) has the same 
boolean value as e1.equals((Object)e2) for every 
e1 and e2 of class C. 

• Altri vincoli:
– sgn(x.compareTo(y)) == -sgn(y.compareTo(x))
– the relation must be transitive: 
– (x.compareTo(y)>0 && y.compareTo(z)>0) implies 

x.compareTo(z)>0.
– Finally, the implementer must ensure that 

x.compareTo(y)==0 implies that 
sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.



  

Example
Class MyClass implements  
                     Comparable<MyClass>{
   private int a;
   ...

   public int compareTo(MyClass other){
       return (this.a ­ other.a);
}



  

Priority Queue Example

Generic types often requests the implementation of 
Comparable:

class PriorityQueue<T extends Comparable<T>> {

         T queue[ ] ;   …

         void insert(T t) {

               ... if ( t.compareTo(queue[i]) ) ... 

           }

          T remove() { ... }

          ...

  }



  

Another example …

 interface LessAndEqual<I> {
            boolean lessThan(I);    
            boolean equal(I);
 }
class Relations<C extends LessAndEqual<C>> extends C {
             boolean greaterThan(Relations<C> a) {
                         return a.lessThan(this);
              }
              boolean greaterEqual(Relations<C> a) {
                        return greaterThan(a) || equal(a);
              }
             boolean notEqual(Relations<C> a) { ... }
             boolean lessEqual(Relations<C> a) { ... }
             ...
 }



  

Implementing Generics

• Type erasure
– Compile-time type checking uses generics
– Compiler eliminates generics by erasing them

• Compile List<T> to List,  T to Object, insert casts

• “Generics are not templates”
– Generic declarations are typechecked
– Generics are compiled once and for all

• No instantiation
• No “code bloat” 

More later when we talk about virtual machine …



  

• Dichiara una classe A che ha come membro un intero

• Dichiara un classe B extends A che ha un metodo equals(B a)

• Dichiara una classe C extends A che ha un metodo 
equals(Object)

• Implementa i metodi toString in modo che stampino “A”, “B” 
e “C” e il valore dell'intero

• Dichiara una Lista di A usando i generici 

• Inserisci qualche B e qualche C

• Stampa il contenuto della lista con un ciclo for each

• Domanda un intero x 
– Scanner sc = new Scanner(System.in);
– int x = sc.nextInt();

• e cerca nella lista un elemento che sia equals a new A(x)
– usa for each e equals
– usa contains QUALI PROBLEMI HAI???

Esercizio



  

Enumeration
•In prior releases, the standard way to represent an 
enumerated type was the int Enum pattern
// int Enum Pattern ­ has severe problems!
public static final int SEASON_WINTER = 0;
public static final int SEASON_SPRING = 1;
public static final int SEASON_SUMMER = 2;
public static final int SEASON_FALL   = 3;

•Not typesafe 
•No namespace - You must prefix constants of an int 
enum with a string (in this case SEASON_) 
•Printed values are uninformative 



  

In Java5
public enum Season { 
                     WINTER, SPRING, SUMMER, FALL }

• Comparable
• toString which prints the name of the symbol
• static values method that returns an array 

containing all of the values of the enum type in the 
order they are declared
– for (Season s : Season.values()) ...



  

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

• Generics (added in Java 1.5)
– Basics, wildcards, …

• Virtual machine
– Loader, verifier, linker, interpreter
– Bytecodes for method lookup
– Bytecode verifier (example: initialize before use)
– Implementation of generics

◆ Security issues



  

Java Implementation

• Compiler and Virtual Machine
– Compiler produces bytecode

– Virtual machine loads classes on demand, verifies 
bytecode properties, interprets bytecode

• Why this design?
– Bytecode interpreter/compilers used before

• Pascal “pcode”; Smalltalk compilers use bytecode

– Minimize machine-dependent part of implementation
• Do optimization on bytecode when possible
• Keep bytecode interpreter simple

– For Java, this gives portability
• Transmit bytecode across network



  

A.classA.java
Java

Compiler

B.class

Loader

Verifier

Linker

Bytecode Interpreter

Java Virtual Machine

Compile source code

Network

Java Virtual Machine 
Architecture



  

JVM memory areas

• Java program has one or more threads

• Each thread has its own stack

• All threads share same heap

metho
d area heap Java 

stacks

PC 
register

s

native 
metho

d 
stacks



  

Class loader

• Runtime system loads classes as needed
– When class is referenced, loader searches for file of 

compiled bytecode instructions

• Default loading mechanism can be replaced 
– Define alternate ClassLoader object

• Extend the abstract ClassLoader class and 
implementation

• ClassLoader does not implement abstract method 
loadClass, but has methods that can be used to 
implement loadClass 

– Can obtain bytecodes from alternate source 
• VM restricts applet communication to site that 

supplied applet



  

Example issue in class loading and linking:

Static members and initialization

class ... {
    /*  static variable with initial value */
   static int x = initial_value  
   /* ---- static initialization block        --- */
   static {   /* code executed once, when loaded */  }

}

• Initialization is important
– Cannot initialize class fields until loaded

• Static block cannot raise an exception
– Handler may not be installed at class loading time



  

JVM Linker and Verifier

• Linker
– Adds compiled class or interface to runtime system

– Creates static fields and initializes them

– Resolves names
• Checks symbolic names and replaces with direct 

references

• Verifier
– Check bytecode of a class or interface before loaded

– Throw VerifyError exception if error occurs



  

Verifier

• Bytecode may not come from standard compiler
– Evil hacker may write dangerous bytecode 

• Verifier checks correctness of bytecode
– Every instruction must have a valid operation code 

– Every branch instruction must branch to the start of 
some other instruction, not middle of instruction 

– Every method must have a structurally correct signature 

– Every instruction obeys the Java type discipline

Last condition is fairly complicated     .



  

Bytecode interpreter

• Standard virtual machine interprets instructions
– Perform run-time checks such as array bounds

– Possible to compile bytecode class file to native code

• Java programs can call native methods
– Typically functions written in C

• Multiple bytecodes for method lookup
– invokevirtual - when class of object known

– invokeinterface  - when interface of object known

– invokestatic - static methods

– invokespecial - some special cases



  

Type Safety of JVM

• Run-time type checking
– All casts are checked to make sure type safe

– All array references are checked to make sure the array 
index is within the array bounds

– References are tested to make sure they are not null 
before they are dereferenced.

• Additional features
– Automatic garbage collection 

– No pointer arithmetic

   If program accesses memory, that memory is allocated to 
the program and declared with correct type



  

JVM uses stack machine

• Java
Class A extends Object {
       int i
       void f(int val) { i = val + 

1;}
}

• Bytecode
Method void f(int)
       aload 0   ; object ref this
       iload 1    ; int val 
       iconst 1  
       iadd        ; add val +1
       putfield #4 <Field int i>
       return

data 
area

local variables

operandstack

Return addr, exception info, Const pool res.

JVM Activation Record

refers to const pool



  

Field and method access

• Instruction includes index into constant pool
– Constant pool stores symbolic names

– Store once, instead of each instruction, to save space

• First execution
– Use symbolic name to find field or method

• Second execution
– Use modified “quick” instruction to simplify search



  

invokeinterface <method-spec>

• Sample code
void add2(Incrementable x) { x.inc(); x.inc(); }

• Search for method
– find class of the object operand (operand on stack)

• must implement the interface named in <method-
spec> 

– search the method table for this class 

– find method with the given name and signature 

• Call the method
– Usual function call with new activation record, etc.



  

Why is search necessary?

interface Incrementable {
public void inc();

}
class IntCounter implements Incrementable {

public void add(int);
public void inc();

   public int value();
}
class FloatCounter implements Incrementable {

public void inc();
public void add(float);
public float value();

}



  

invokevirtual <method-spec>

• Similar to invokeinterface, but class is known

• Search for method
– search the method table of this class 

– find method with the given name and signature

• Can we use static type for efficiency?
– Each execution of an instruction will be to object from 

subclass of statically-known class

– Constant offset into vtable 
• like C++, but dynamic linking makes search useful 

first time

– See next slide



  

Bytecode rewriting: 
invokevirtual

• After search, rewrite bytcode to use fixed offset 
into the vtable. No search on second execution.

inv_virt_quick

vtable offset

Constant  pool

“A.foo()”

Bytecode

invokevirtual



  

Bytecode rewriting: 
invokeinterface

Cache address of method; check class on second use

inv_int_quick

Constant  pool

“A.foo()”

Bytecode

invokeinterface “A.foo()”



  

Bytecode Verifier

• Let’s look at one example to see how this works

• Correctness condition
– No operations should be invoked on an object 

– until it has been initialized

• Bytecode instructions
–  new 〈class〉   allocate memory for object

–  init 〈class〉   initialize object on top of stack

–  use 〈class〉     use object on top of stack



  

Object creation

• Example:
Point p = new Point(3)

1: new Point

2: dup

3: iconst 3

4: init Point

• No easy pattern to match
• Multiple refs to same uninitialized object

– Need some form of alias analysis

Java source

bytecode



  

Alias Analysis

• Other situations:

                                   or

• Equivalence classes based on line where object 
was created.

1: new P
2: new P 
3: init P

init P

new P



  

Tracking initialize-before-use

• Alias analysis uses line numbers
– Two pointers to “unitialized object created at line 47” 

are assumed to point to same object

– All accessible objects must be initialized before jump 
backwards (possible loop)

• Oversight in treatment of local subroutines
– Used in implementation of try-finally

– Object created in finally not necessarily initialized

• No clear security consequence
– Bug fixed

  Have proved correctness of modified verifier for 
init



  

variables 1 and 2 contain references 
to two different objects which are both 
“uninitialized object created on line 11”

Bug in Sun’s JDK 1.1.4

• Example:

1: jsr 10
2: store 1
3: jsr 10
4: store 2
5: load 2
6: init P
7: load 1
8: use P
9: halt

10: store 0
11: new P
12: ret 0



  

Implementing Generics

• Two possible implementations
– Heterogeneous: instantiate generics

– Homogeneous: translate generic class to standard class

class Stack {
  void push(Object o)  

{ ... }
  Object pop() { ... }
  ...}

class Stack<A> {
  void push(A a) { ... }
  A pop() { ... }
  ...}

Idea: replace class parameter <A> by Object, insert casts



  

Example generic construct: Lists

• Lists possible for any type of object
– For any type t, can have type list_of_t

– Operations cons, head, tail work for any type

• Define generic list class
template <type t> class List {

private: t* data; List<t> * next;

public: void      Cons (t* x) { … }

                    t*        Head (     ) { … }

                     List<t>  Tail   (     ) { … } 

};



  

Implementation Issues

• Data on heap, manipulated by pointer
– Every list cell has two pointers, data and next

– All pointers are same size

– Can use same representation, code for all types

• Data stored in local variables
– List cell must have space for data

– Different representation for different types

– Different code if offset built into code



  

“Homogeneous Implementation”

 Same representation and code for all types of data

data

next data

next • •    •



  

“Heterogeneous 
Implementation”

 Specialize representation, code according to type

•  •  •

next

next

next

•  •  •

next



  

Example: Hash Table

interface Hashable {

int HashCode ();

};

class HashTable < Key implements Hashable, Value> {

void Insert (Key k, Value v) {

int bucket = k.HashCode();

InsertAt (bucket, k, v);

}

… 

};



  

Heterogeneous Implementation

• Compile generic class  C<param>
– Check use of parameter type according to constraints

– Produce extended form of bytecode class file
• Store constraints, type parameter names in bytecode 

file

• Expand when class C<actual>  is loaded 
– Replace parameter type by actual class

– Result is ordinary class file

– This is a preprocessor to the class loader:
• No change to the virtual machine
• No need for additional bytecodes



  

Generic bytecode with 
placeholders

void Insert (Key k, Value v) {
int bucket = k.HashCode();
InsertAt (bucket, k, v);

} 
Method void Insert($1, $2)

aload_1
invokevirtual #6 <Method $1.HashCode()I>
istore_3     aload_0    iload_3    aload_1   aload_2 
invokevirtual #7 <Method HashTable<$1,$2>.

                               InsertAt(IL$1;L$2;)V>
return



  

Instantiation of generic bytecode

void Insert (Key k, Value v) {
int bucket = k.HashCode();
InsertAt (bucket, k, v);

} 
Method void Insert(Name, Integer)

aload_1
invokevirtual #6 <Method Name.HashCode()I>
istore_3     aload_0    iload_3    aload_1   aload_2 
invokevirtual #7 <Method HashTable<Name,Integer>

                               InsertAt(ILName;LInteger;)V>
return



  

Load parameterized class file

• Use of  HashTable <Name, Integer>  invokes 
loader

• Several preprocess steps
– Locate bytecode for parameterized class, actual types

– Check the parameter constraints against actual class

– Substitute actual type name for parameter type

– Proceed with verifier, linker as usual.

• Can be implemented with ~500 lines Java code
– Portable, efficient, no need to change virtual machine



  

Java 1.5 Solution

• Homogeneous implementation

• Algorithm
– replace class parameter <A> by Object, insert casts
– if <A extends B>, replace A by B

• Why choose this implementation?
– Backward compatibility of distributed bytecode
– Surprise: faster because class loading is slow

class Stack {
  void push(Object o)  { ... }
  Object pop() { ... }
  ...}

class Stack<A> {
  void push(A a) { ... }
  A pop() { ... }
  ...}



  

Some details that matter

• Allocation of static variables
– Heterogeneous: separate copy for each instance
– Homogenous: one copy shared by all instances

• Constructor of actual class parameter
– Heterogeneous: class G<T> …   T x = new T; 
– Homogenous:  new T may just be Object ! 

• Resolve overloading
– Heterogeneous: could try to resolve at instantiation time 

(C++)
– Homogenous: no information about type parameter

• When is template instantiated?
– Compile- or link-time (C++)
– Java alternative: class load time 



  

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

• Generics (added in Java 1.5)
– Basics, wildcards, …

• Virtual machine
– Loader, verifier, linker, interpreter
– Bytecodes for method lookup
– Bytecode verifier (example: initialize before use)
– Implementation of generics

• Security issues



  

Java Security

• Security
– Prevent unauthorized use of computational resources

• Java security
– Java code can read input from careless user or malicious 

attacker

– Java code can be transmitted over network – 

   code may be written by careless friend or malicious 
attacker

  Java is designed to reduce many security risks



  

Java Security Mechanisms

• Sandboxing
– Run program in restricted environment

• Analogy: child’s sandbox with only safe toys

– This term refers to 
• Features of loader, verifier, interpreter that restrict 

program
• Java Security Manager, a special object that acts as 

access control “gatekeeper”

• Code signing
– Use cryptography to establish origin of class file

• This info can be used by security manager



  

Buffer Overflow Attack

• Most prevalent security problem today
– Approximately 80% of CERT advisories are related to 

buffer overflow vulnerabilities in OS, other code

• General network-based attack
– Attacker sends carefully designed network msgs

– Input causes privileged program (e.g., Sendmail) to do 
something it was not designed to do

• Does not work in Java
– Illustrates what Java was designed to prevent



  

Sample C code to illustrate 
attack

void f (char *str) {
    char buffer[16];
    …
    strcpy(buffer,str);
}
void main() {
    char large_string[256];
    int i;
    for( i = 0; i < 255; i++) 

 
large_string[i] = 'A';

    f(large_string);
}

• Function
– Copies str into buffer until null 

character found
– Could write past end of  buffer, 

over function retun addr

• Calling program
– Writes 'A' over f activation 

record
– Function f  “returns” to 

location 0x4141414141
– This causes segmentation fault

• Variations
– Put meaningful address in 

string
– Put code in string and jump to 

it !!

See: Smashing the stack for fun and profit



  

Java Sandbox

• Four complementary mechanisms
– Class loader

• Separate namespaces for separate class loaders
• Associates protection domain with each class

– Verifier and JVM run-time tests
• NO unchecked casts or other type errors, NO array 

overflow
• Preserves private, protected visibility levels

– Security Manager
• Called by library functions to decide if request is 

allowed
• Uses protection domain associated with code, user 

policy
• Recall: stack inspection problem on midterm



  

Why is typing a security feature?

• Sandbox mechanisms all rely on type safety

• Example
– Unchecked C cast lets code make any system call

int (*fp)()     /* variable "fp" is a function pointer            
*/

...
fp = addr;     /* assign address stored in an integer var  

 */
(*fp)(n);       /* call the function at this address              

*/

    Other examples involving type confusion in book



  

Security Manager

• Java library functions call security manager

• Security manager object answers at run time 
– Decide if calling code is allowed to do operation 

– Examine protection domain of calling class
• Signer: organization that signed code before loading
• Location: URL where the Java classes came from 

– Uses the system policy to decide access permission



  

Sample SecurityManager 
methods

Checks if a network connection can be 
created.

checkConnect

Check to prevent the installation of 
additional ClassLoaders.

checkCreate 
ClassLoader

Checks if a certain network port can be 
listened to for connections.

checkListen

Checks if a file can be written to.checkWrite

Checks if a file can be read from.checkRead

Checks if the system commands can be 
executed.

checkExec



  

Stack Inspection

•  Permission depends on
– Permission of calling method

– Permission of all methods 
above it on stack

• Up to method that is 
trusted and asserts this 
trust 

Many details omitted here

java.io.FileInputStream

method f

method g

method h

Stories: Netscape font / passwd bug; Shockwave plug-in



  

Java Summary

• Objects 
– have fields and methods

– alloc on heap, access by pointer, garbage collected

• Classes
– Public, Private, Protected, Package (not exactly C++)

– Can have static (class) members

– Constructors and  finalize methods 

• Inheritance
– Single inheritance

– Final classes and methods



  

Java Summary (II)

• Subtyping
– Determined from inheritance hierarchy

– Class may implement multiple interfaces

• Virtual machine
– Load bytecode for classes at run time

– Verifier checks bytecode

– Interpreter also makes run-time checks 
• type casts
• array bounds
•  …

– Portability and security are main considerations 



  

Some Highlights

• Dynamic lookup
– Different bytecodes for by-class, by-interface
– Search vtable + Bytecode rewriting or caching

• Subtyping
– Interfaces instead of multiple inheritance
– Awkward treatment of array subtyping (my opinion)

• Generics
– Type checked, not instantiated, some limitations (<T>…

new T)

• Bytecode-based JVM
– Bytcode verifier
– Security: security manager, stack inspection



  

Comparison with C++

• Almost everything is object  + Simplicity - 
Efficiency
–  except for values from primitive types

• Type safe    + Safety +/- Code complexity - 
Efficiency 
– Arrays are bounds checked

– No pointer arithmetic, no unchecked type casts

– Garbage collected

• Interpreted    + Portability + Safety - Efficiency 
– Compiled to byte code: a generalized form of assembly 

language designed to interpret quickly.

– Byte codes contain type information



  

Comparison                      (cont’d)

• Objects accessed by ptr      + Simplicity - Efficiency
– No problems with direct manipulation of objects

• Garbage collection:  + Safety + Simplicity - 
Efficiency 
– Needed to support type safety 

• Built-in concurrency support  + Portability 
– Used for concurrent garbage collection (avoid waiting?)

– Concurrency control via synchronous methods 

– Part of network support: download data while executing

• Exceptions
– As in C++, integral part of language design



  

Links

• Enhancements in JDK 5
– http://java.sun.com/j2se/1.5.0/docs/guide/language/inde

x.html

• J2SE 5.0 in a Nutshell 
– http://java.sun.com/developer/technicalArticles/releases

/j2se15/

• Generics
– http://www.langer.camelot.de/Resources/Links/JavaGene

rics.htm



  

Declaring Generic classes
• For example a Coppia of two objects one of type E 

and the other of type F
class Coppia<E,F>{
     E sinistro;
     F destro;

     Coppia(E a, F b){ ... }

     E getSinistro(){ return sinistro;}

}
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