

Java

Angelo Gargantini

Informatica III /2007/08

Outline
• Language Overview

– History and design
goals

• Classes and
Inheritance
– Object features
– Encapsulation
– Inheritance

• Types and Subtyping
– Primitive and ref types
– Interfaces; arrays
– Exception hierarchy
– Subtype polymorphism

and generic
programming

• Virtual machine
overview
– Loader and initialization
– Linker and verifier
– Bytecode interpreter

• Method lookup
– four different bytecodes

• Verifier analysis
• Implementation of

generics
• Security

– Buffer overflow
– Java “sandbox”
– Type safety and attacks

Origins of the language

• James Gosling and others at Sun, 1990 - 95

• Oak language for “set-top box”
– small networked device with television display

• graphics
• execution of simple programs
• communication between local program and remote

site
• no “expert programmer” to deal with crash, etc.

• Internet application
– simple language for writing programs that can be

transmitted over network

Design Goals

• Portability
– Internet-wide distribution: PC, Unix, Mac

• Reliability
– Avoid program crashes and error messages

• Safety
– Programmer may be malicious

• Simplicity and familiarity
– Appeal to average programmer; less complex than C++

• Efficiency
– Important but secondary

General design decisions

• Simplicity
– Almost everything is an object

– All objects on heap, accessed through pointers

– No functions, no multiple inheritance, no go to, no
operator overloading, few automatic coercions

• Portability and network transfer
– Bytecode interpreter on many platforms

• Reliability and Safety
– Typed source and typed bytecode language

– Run-time type and bounds checks

– Garbage collection

Java System

• The Java programming language

• Compiler and run-time system
– Programmer compiles code

– Compiled code transmitted on network

– Receiver executes on interpreter (JVM)

– Safety checks made before/during execution

• Library, including graphics, security, etc.
– Large library made it easier for projects to adopt Java

– Interoperability
• Provision for “native” methods

Java Release History

• 1995 (1.0) – First public release

• 1997 (1.1) – Nested classes
– Support for function objects

• 2001 (1.4) – Assertions
– Verify programmers understanding of code

• 2004 (1.5) – Tiger
– Generics, foreach, Autoboxing/Unboxing,

– Typesafe Enums, Varargs, Static Import,

– Annotations, concurrency utility library

• 2006 (1.6) - Mustang

Improvements through Java Community Process

Enhancements in JDK 5 (= Java 1.5)
• Generics

– polymorphism and compile-time type safety
• Enhanced for Loop

– for iterating over collections and arrays
• Autoboxing/Unboxing

– automatic conversion between primitive, wrapper types
• Typesafe Enums

– enumerated types with arbitrary methods and fields
• Varargs

– puts argument lists into an array; variable-length
argument lists

• Static Import
– avoid qualifying static members with class names

• Annotations (Metadata)
– enables tools to generate code from annotations (JSR 175)

• Concurrency utility library, led by Doug Lea (JSR-166)

Outline

• Objects in Java
– Classes, encapsulation, inheritance

◆ Type system
• Primitive types, interfaces, arrays, exceptions

◆ Generics (added in Java 1.5)
• Basics, wildcards, …

◆ Virtual machine
• Loader, verifier, linker, interpreter
• Bytecodes for method lookup

◆ Security issues

Language Terminology

• Class, object - as in other languages

• Field – data member

• Method - member function
• Static members - class fields and methods
• this - self
• Package - set of classes in shared namespace

• Native method - method written in another
language, often C

Java Classes and Objects

• Syntax similar to C++

• Object
– has fields and methods

– is allocated on heap, not run-time stack

– accessible through reference (only ptr assignment)

– garbage collected

• Dynamic lookup
– Similar in behavior to other languages

– Static typing => more efficient than Smalltalk

– Dynamic linking, interfaces => slower than C++

Point Class

class Point {

 static public Point O = new Point(0);

 private int x;

 protected void setX (int y) {x = y;}

 public int getX() {return x;}

 Point(int xval) {x = xval;} // constructor

}

– Visibility similar to C++, but not exactly (later slide)

Object initialization

• Java guarantees constructor call for each object
– Memory allocated

– Constructor called to initialize memory

– Some interesting issues related to inheritance
 We’ll discuss later …

• Cannot do this (would be bad C++ style anyway):
– Obj* obj = (Obj*)malloc(sizeof(Obj));

• Static fields of class initialized at class load time
– Talk about class loading later

Garbage Collection and Finalize

• Objects are garbage collected
– No explicit free

– Avoids dangling pointers and resulting type errors

• Problem
– What if object has opened file or holds lock?

• Solution
– finalize method, called by the garbage collector

• Before space is reclaimed, or when virtual machine
exits

• Space overflow is not really the right condition to
trigger finalization when an object holds a lock...)

– Important convention: call super.finalize

Encapsulation and packages

• Every field, method
belongs to a class

• Every class is part of
some package
– Can be unnamed default

package

– File declares which
package code belongs to

package

class
field

method

package

class
field

method

Visibility and access

• Four visibility distinctions
– public, private, protected, package

• Method can refer to
– private members of class it belongs to

– non-private members of all classes in same package

– protected members of superclasses (in diff package)

– public members of classes in visible packages
Visibility determined by files system, etc. (outside

language)

• Qualified names (or use import)
– java.lang.String.substring()

package class method

Inheritance

• Similar to Smalltalk, C++

• Subclass inherits from superclass
– Single inheritance only (but Java has interfaces)

• Some additional features
– Conventions regarding super in constructor and finalize

 methods

– Final classes and methods

Example subclass

class ColorPoint extends Point {

 // Additional fields and methods

 private Color c;

 protected void setC (Color d) {c = d;}

 public Color getC() {return c;}

 // Define constructor

 ColorPoint(int xval, Color cval) {

 super(xval); // call Point constructor

 c = cval; } // initialize ColorPoint field

 }

Class Object

• Every class extends another class
– Superclass is Object if no other class named

• Methods of class Object
– getClass – return the Class object representing class of

the object
– toString – returns string representation of object

– equals – default object equality (not ptr equality)

– hashCode
– clone – makes a duplicate of an object
– wait, notify, notifyAll – used with concurrency
– finalize

Constructors and Super

• Java guarantees constructor call for each object

• This must be preserved by inheritance
– Subclass constructor must call super constructor

• If first statement is not call to super, then call super()
 inserted automatically by compiler

• If superclass does not have a constructor with no
args, then this causes compiler error (yuck)

• Exception to rule: if one constructor invokes another,
then it is responsibility of second constructor to call
super, e.g.,

 ColorPoint() { ColorPoint(0,blue);}

 is compiled without inserting call to super

• Different conventions for finalize and super
• Compiler does not force call to super finalize

Final classes and methods

• Restrict inheritance
– Final classes and methods cannot be redefined

• Example
 java.lang.String

• Reasons for this feature
– Important for security

• Programmer controls behavior of all subclasses
• Critical because subclasses produce subtypes

– Compare to C++ virtual/non-virtual
• Method is “virtual” until it becomes final

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

◆ Generics (added in Java 1.5)
• Basics, wildcards, …

◆ Virtual machine
• Loader, verifier, linker, interpreter
• Bytecodes for method lookup

◆ Security issues

Java Types
• Two general kinds of times

– Primitive types – not objects
• Integers, Booleans, etc

– Reference types
• Classes, interfaces, arrays
• No syntax distinguishing Object * from Object

• Static type checking
– Every expression has type, determined from its parts
– Some auto conversions, many casts are checked at run

time
– Example, assuming A <: B (A sottotipo di B)

• Can use A x and type
• If B x, then can try to cast x to A
• Downcast checked at run-time, may raise exception

Classification of Java types

Reference Types

Primitive Types

int

Shape

Object[]

Object

Shape[]

boolean …

Throwable

Square Square[]Circle Circle[]

longfloatbyte

Exception
types

user-defined arrays

Subtyping

• Primitive types
– Conversions: int -> long, double -> long, …

• Class subtyping similar to C++
– Subclass produces subtype
– Single inheritance => subclasses form tree

• Interfaces
– Completely abstract classes

• no implementation

– Multiple subtyping
• Interface can have multiple subtypes (extends,

implements)

• Arrays
– Covariant subtyping – not consistent with semantic

principles

Java class subtyping

• Signature Conformance
– Subclass method signatures must conform to those of

superclass

• Three ways signature could vary
– Argument types
– Return type
– Exceptions
 How much conformance is needed in principle?

• Java rule
– Java 1.1: Arguments and returns must have identical

types, may remove exceptions
– Java 1.5: covariant return type specialization

Covariance
• Covariance means that arguments, return values, or

exceptions of overriding methods can be of subtypes
of the original types.

• In Java 5 Parameter types have to be exactly the
same (invariant) for method overriding, otherwise the
method is overloaded with a parallel definition
instead.

class A {

 public A whoAreYou() {...}

}

class B extends A {

 // override A.whoAreYou *and* narrow the return type.

 public B whoAreYou() {...}

}

Interface subtyping: example

interface Shape {
public float center();

 public void rotate(float degrees);
}
interface Drawable {

public void setColor(Color c);
 public void draw();
}
class Circle implements Shape, Drawable {

// does not inherit any implementation
 // but must define Shape, Drawable methods
}

Properties of interfaces

• Flexibility
– Allows subtype graph instead of tree

– Avoids problems with multiple inheritance of
implementations (remember C++ “diamond”)

• Cost
– Offset in method lookup table not known at compile

– Different bytecodes for method lookup
• one when class is known
• one when only interface is known

– search for location of method
– cache for use next time this call is made (from this

line)

Overload vs Override
• Overlod = più metodi o costruttori con lo stesso

nome ma diversa segnatura
– Segnatura: nome del metodo e lista dei tipi dei suoi

argomenti

• L'overloading viene risolto in fase di compilazione
•
public static double valoreAssoluto(double x) {
if (x > 0) return x;
else return -x;
}
public static int valoreAssoluto(int x) {
return (int) valoreAssoluto((double) x);

Compilazione: scelta segnatura
• In compilazione viene scelta la segnatura del

metodo da eseguire in base:
(1) al tipo del riferimento utilizzato per invocare il

metodo
(2) al tipo degli argomenti indicati nella chiamata

Esempio
• A r;...
• r.m(2)
• Il compilatore cerca fra tutte le segnature di

metodi di nome m disponibili per il tipo A quella
“più adatta” per gli argomenti specificati

Esempio
A r;
...
r.m(2)
• Se le segnature disponibili per il tipo A sono:
int m(byte b)
int m(long l)
int m(double d)
• il compilatore sceglie la seconda

Overriding
• Quando si riscrive in una sottoclasse un metodo

della superclasse con la stessa segnatura.
• L’overriding viene risolto in fase di esecuzione
• Compilazione:
• scelta della segnatura: il compilatore stabilisce la

segnatura del metodo da eseguire (early binding)
• Esecuzione:
• scelta del metodo: Il metodo da eseguire, tra quelli

con la segnatura selezionata, viene scelto al
momento dell’esecuzione, sulla base del tipo
dell’oggetto (late binding)

Fase di compilazione
(1) Scelta delle segnature “candidate”
• Il compilatore individua le segnature che possono

soddisfare la chiamata
– (a) compatibile con gli argomenti utilizzati nella chiamata

il numero dei parametri nella segnatura `e uguale al numero
degli argomenti utilizzati ogni argomento `e di un tipo
assegnabile al corrispondente parametro

– (b) accessibile al codice chiamante

• Se non esistono segnature candidate, il
compilatore segnala un errore.

(2) Scelta della segnatura “pi`u specifica”
• Tra le segnature candidate, il compilatore

seleziona quella che richiede il minor numero di
promozioni

Esempio 1
A alfa;
- alfa.assegna(2)
Una segnatura candidata:

assegna(long x)
- alfa.assegna(2.0)
Nessuna segnatura

candidata (errore)

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)

Esempio 2
B beta;
beta.assegna(2)
Tre segnature candidate:
• assegna(int x)
• assegna(double x)
• assegna(long x)
• La pi`u specifica `e

assegna(int x)

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)

Ambiguità
• Se per l’invocazione:
• z(1, 2)
• le segnature candidate sono:
• z(double x, int y)
• z(int x, double y)
• Il compilatore non `e in grado di individuare la

segnatura pi`u specifica e segnala un messaggio di
errore

Esecuzione: scelta del metodo
• La JVM sceglie il metodo da eseguire sulla base del

tipo dell’oggetto usato nell’invocazione
– cerca un metodo con la segnatura selezionata in

fase di compilazione
– risalendo la gerarchia delle classi a partire dalla

classe dell’oggetto che deve eseguire il metodo

Esempio 1
A alfa = new C()
alfa.assegna(2)
Una segnatura candidata:

assegna(long x)

Ricerca a partire da C un
metodo assegna(long)

Esegue il metodo di A
anche se 2 è int !!!

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)

Esempio 2
B beta = new C()
beta.assegna(2)
segnatura selezionata:

assegna(int x)

Ricerca a partire da C un
metodo assegna(int)

Esegue il metodo di C

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)

Attenzione
• Quando si ridefiniscono i metodi in java bisogna

usare la stessa segnatura !!
• Vedi il problema con equals
•
class A { int x; A(int y){x = y;}
 public equals(A a){ return (x == a.x);} }

Object a1 = new A(3);
A a2 = new A(3);
a1.equals(a2);

Array types

• Automatically defined
– Array type T[] exists for each class, interface type T

– Cannot extended array types (array types are final)

– Multi-dimensional arrays as arrays of arrays: T[] []

• Treated as reference type
– An array variable is a pointer to an array, can be null

– Example: Circle[] x = new Circle[array_size]

– Anonymous array expression: new int[] {1,2,3, ... 10}

• Every array type is a subtype of Object[], Object
– Length of array is not part of its static type

Array subtyping - covariance

• Covariance
– if S <: T then S[] <: T[]

• S <:T means “S is subtype of T”

• Standard type error
class A {…}

class B extends A {…}

B[] bArray = new B[10]
A[] aArray = bArray // considered OK since B[] <: A[]
aArray[0] = new A() // compiles, but run-time error

 // raises ArrayStoreException
// b/c aArray actually refers to an array of B objects
// so that assignment, aArray[0] = new A(); would violate

the type of bArray

Covariance problem again …

• Remember Simula problem
– If A <: B, then A ref <: B ref

– Needed run-time test to prevent bad assignment

– Covariance for assignable cells is not right in principle

• Explanation
– interface of “T reference cell” is

 put : T → T ref
 get : T ref → T

– Remember covariance/contravariance of functions

Afterthought on Java arrays

Date: Fri, 09 Oct 1998 09:41:05 -0600
From: bill joy
Subject: …[discussion about java genericity]

actually, java array covariance was done for less noble reasons
…: it made some generic "bcopy" (memory copy) and like
operations much easier to write...
I proposed to take this out in 95, but it was too late (...).
i think it is unfortunate that it wasn't taken out...
it would have made adding genericity later much cleaner, and
[array covariance] doesn't pay for its complexity today.

wnj

But compare this to C++!!

• Access by pointer: you can't do array subtyping.
B* barr[15];

A* aarr[] = barr; // not allowed

• Direct naming: allowed, but you get garbage !!
B barr[15];

A aarr[] = barr;

aarr[k] translates to *(aarr+sizeof(A)*k)
barr[k] translates to *(barr+sizeof(B)*k)
If sizeof(B) != sizeof(A), you just grab random
bits.

 Is there any sense to this?

Java Exceptions

• Similar basic functionality to ML, C++
– Constructs to throw and catch exceptions

– Dynamic scoping of handler

• Some differences
– An exception is an object from an exception class

– Subtyping between exception classes
• Use subtyping to match type of exception or pass it

on …
• Similar functionality to ML pattern matching in

handler

– Type of method includes exceptions it can throw
• Actually, only subclasses of Exception (see next

slide)

Exception Classes

• If a method may throw a checked exception, then
this must be in the type of the method

Throwable

Exception Runtime
Exception

Error

User-defined
exception classes

Unchecked exceptions

checked
exceptions

Try/finally blocks

• Exceptions are caught in try blocks
try {

statements

} catch (ex-type1 identifier1) {

statements

} catch (ex-type2 identifier2) {

statements

} finally {

statements

}

• Implementation: finally compiled to jsr

Why define new exception
types?

• Exception may contain data
– Class Throwable includes a string field so that cause of

exception can be described

– Pass other data by declaring additional fields or
methods

• Subtype hierarchy used to catch exceptions
catch <exception-type> <identifier> { … }

will catch any exception from any subtype of exception-
type and bind object to identifier

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

• Generics (added in Java 1.5)
– Basics, wildcards, …

◆ Virtual machine
◆

• Loader, verifier, linker, interpreter
• Bytecodes for method lookup

◆ Security issues

Java Generic Programming

• Java has class Object
– Supertype of all object types

– This allows “subtype polymorphism”
• Can apply operation on class T to any subclass S <: T

• Java 1.0 – 1.4 do not have templates
– No parametric polymorphism

– Many consider this the biggest deficiency of Java

• Java type system does not let you cheat
– Can cast from supertype to subtype

– Cast is checked at run time

Example generic construct:
Stack

• Stacks possible for any type of object
– For any type t, can have type stack_of_t

– Operations push, pop work for any type

• In C++, would write generic stack class
template <type t> class Stack {

private: t data; Stack<t> * next;
public: void push (t* x) { … }

 t* pop () { … }
};

• What can we do in Java?

Java 1.0 vs Generics
class Stack {
 void push(Object o) { ... }
 Object pop() { ... }
 ...}

String s = "Hello";
Stack st = new Stack();
...
st.push(s);
...
s = (String) st.pop();

class Stack<A> {
 void push(A a) { ... }
 A pop() { ... }
 ...}

String s = "Hello";
Stack<String> st =
 new

Stack<String>();
st.push(s);
...
s = st.pop();

Why no generics in early Java ?

• Many proposals

• Basic language goals seem clear

• Details take some effort to work out
– Exact typing constraints

– Implementation
• Existing virtual machine?
• Additional bytecodes?
• Duplicate code for each instance?
• Use same code (with casts) for all instances

Java Community proposal (JSR 14) incorporated into Java 1.5

 Java Generics (Java 1.5, “Tiger”)

• Adopts syntax on previous slide

• Adds auto boxing/unboxing

User conversion Automatic conversion

Stack<Integer> st =
 new Stack<Integer>();
st.push(new Integer(12));
...
int i =

(st.pop()).intValue();

Stack<Integer> st =
 new

Stack<Integer>();
st.push(12);
...
int i = st.pop();

Java generics are type checked

• A generic class may use operations on objects of
a parameter type
– Example: PriorityQueue<T> … if x.less(y) then …

• Two possible solutions
– C++: Link and see if all operations can be resolved

– Java: Type check and compile generics w/o linking
• This requires programmer to give information about

type parameter
• Example: PriorityQueue<T extends ...>

Constraints on generic types
• One can introduce constraints over a type used as

parameter in a generic class

< E extends T> : E must be a subtype of T
< E super T> : E must be a supertype of T

Example: Hash Table

interface Hashable {
int HashCode ();

};
class HashTable < Key extends Hashable, Value>

{
void Insert (Key k, Value v) {

int bucket = k.HashCode();
InsertAt (bucket, k, v);

}
…

};
This expression must typecheck

Use “Key extends Hashable”

Interface Comparable<T>
• imposes a total ordering on the objects of each

class that implements it (natural ordering)
• int compareTo(T o): comparison method

– compares this object with o and returns a negative
integer, zero, or a positive integer as this object is less
than, equal to, or greater than the specified object.

• Lists (and arrays) of objects that implement this
interface can be sorted automatically by
Collections.sort (and Arrays.sort).

• Objects that implement this interface can be used
as keys in a sorted map or elements in a sorted
set, without the need to specify a comparator.

compareTo
• The natural ordering for a class C is said to be

consistent with equals if and only if
(e1.compareTo((Object)e2) == 0) has the same
boolean value as e1.equals((Object)e2) for every
e1 and e2 of class C.

• Altri vincoli:
– sgn(x.compareTo(y)) == -sgn(y.compareTo(x))
– the relation must be transitive:
– (x.compareTo(y)>0 && y.compareTo(z)>0) implies

x.compareTo(z)>0.
– Finally, the implementer must ensure that

x.compareTo(y)==0 implies that
sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.

Example
Class MyClass implements
 Comparable<MyClass>{
 private int a;
 ...

 public int compareTo(MyClass other){
 return (this.a ­ other.a);
}

Priority Queue Example

Generic types often requests the implementation of
Comparable:

class PriorityQueue<T extends Comparable<T>> {

 T queue[] ; …

 void insert(T t) {

 ... if (t.compareTo(queue[i])) ...

 }

 T remove() { ... }

 ...

 }

Another example …

 interface LessAndEqual<I> {
 boolean lessThan(I);
 boolean equal(I);
 }
class Relations<C extends LessAndEqual<C>> extends C {
 boolean greaterThan(Relations<C> a) {
 return a.lessThan(this);
 }
 boolean greaterEqual(Relations<C> a) {
 return greaterThan(a) || equal(a);
 }
 boolean notEqual(Relations<C> a) { ... }
 boolean lessEqual(Relations<C> a) { ... }
 ...
 }

Implementing Generics

• Type erasure
– Compile-time type checking uses generics
– Compiler eliminates generics by erasing them

• Compile List<T> to List, T to Object, insert casts

• “Generics are not templates”
– Generic declarations are typechecked
– Generics are compiled once and for all

• No instantiation
• No “code bloat”

More later when we talk about virtual machine …

• Dichiara una classe A che ha come membro un intero

• Dichiara un classe B extends A che ha un metodo equals(B a)

• Dichiara una classe C extends A che ha un metodo
equals(Object)

• Implementa i metodi toString in modo che stampino “A”, “B”
e “C” e il valore dell'intero

• Dichiara una Lista di A usando i generici

• Inserisci qualche B e qualche C

• Stampa il contenuto della lista con un ciclo for each

• Domanda un intero x
– Scanner sc = new Scanner(System.in);
– int x = sc.nextInt();

• e cerca nella lista un elemento che sia equals a new A(x)
– usa for each e equals
– usa contains QUALI PROBLEMI HAI???

Esercizio

Enumeration
•In prior releases, the standard way to represent an
enumerated type was the int Enum pattern
// int Enum Pattern ­ has severe problems!
public static final int SEASON_WINTER = 0;
public static final int SEASON_SPRING = 1;
public static final int SEASON_SUMMER = 2;
public static final int SEASON_FALL = 3;

•Not typesafe
•No namespace - You must prefix constants of an int
enum with a string (in this case SEASON_)
•Printed values are uninformative

In Java5
public enum Season {
 WINTER, SPRING, SUMMER, FALL }

• Comparable
• toString which prints the name of the symbol
• static values method that returns an array

containing all of the values of the enum type in the
order they are declared
– for (Season s : Season.values()) ...

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

• Generics (added in Java 1.5)
– Basics, wildcards, …

• Virtual machine
– Loader, verifier, linker, interpreter
– Bytecodes for method lookup
– Bytecode verifier (example: initialize before use)
– Implementation of generics

◆ Security issues

Java Implementation

• Compiler and Virtual Machine
– Compiler produces bytecode

– Virtual machine loads classes on demand, verifies
bytecode properties, interprets bytecode

• Why this design?
– Bytecode interpreter/compilers used before

• Pascal “pcode”; Smalltalk compilers use bytecode

– Minimize machine-dependent part of implementation
• Do optimization on bytecode when possible
• Keep bytecode interpreter simple

– For Java, this gives portability
• Transmit bytecode across network

A.classA.java
Java

Compiler

B.class

Loader

Verifier

Linker

Bytecode Interpreter

Java Virtual Machine

Compile source code

Network

Java Virtual Machine
Architecture

JVM memory areas

• Java program has one or more threads

• Each thread has its own stack

• All threads share same heap

metho
d area heap Java

stacks

PC
register

s

native
metho

d
stacks

Class loader

• Runtime system loads classes as needed
– When class is referenced, loader searches for file of

compiled bytecode instructions

• Default loading mechanism can be replaced
– Define alternate ClassLoader object

• Extend the abstract ClassLoader class and
implementation

• ClassLoader does not implement abstract method
loadClass, but has methods that can be used to
implement loadClass

– Can obtain bytecodes from alternate source
• VM restricts applet communication to site that

supplied applet

Example issue in class loading and linking:

Static members and initialization

class ... {
 /* static variable with initial value */
 static int x = initial_value
 /* ---- static initialization block --- */
 static { /* code executed once, when loaded */ }

}

• Initialization is important
– Cannot initialize class fields until loaded

• Static block cannot raise an exception
– Handler may not be installed at class loading time

JVM Linker and Verifier

• Linker
– Adds compiled class or interface to runtime system

– Creates static fields and initializes them

– Resolves names
• Checks symbolic names and replaces with direct

references

• Verifier
– Check bytecode of a class or interface before loaded

– Throw VerifyError exception if error occurs

Verifier

• Bytecode may not come from standard compiler
– Evil hacker may write dangerous bytecode

• Verifier checks correctness of bytecode
– Every instruction must have a valid operation code

– Every branch instruction must branch to the start of
some other instruction, not middle of instruction

– Every method must have a structurally correct signature

– Every instruction obeys the Java type discipline

Last condition is fairly complicated .

Bytecode interpreter

• Standard virtual machine interprets instructions
– Perform run-time checks such as array bounds

– Possible to compile bytecode class file to native code

• Java programs can call native methods
– Typically functions written in C

• Multiple bytecodes for method lookup
– invokevirtual - when class of object known

– invokeinterface - when interface of object known

– invokestatic - static methods

– invokespecial - some special cases

Type Safety of JVM

• Run-time type checking
– All casts are checked to make sure type safe

– All array references are checked to make sure the array
index is within the array bounds

– References are tested to make sure they are not null
before they are dereferenced.

• Additional features
– Automatic garbage collection

– No pointer arithmetic

 If program accesses memory, that memory is allocated to
the program and declared with correct type

JVM uses stack machine

• Java
Class A extends Object {
 int i
 void f(int val) { i = val +

1;}
}

• Bytecode
Method void f(int)
 aload 0 ; object ref this
 iload 1 ; int val
 iconst 1
 iadd ; add val +1
 putfield #4 <Field int i>
 return

data
area

local variables

operandstack

Return addr, exception info, Const pool res.

JVM Activation Record

refers to const pool

Field and method access

• Instruction includes index into constant pool
– Constant pool stores symbolic names

– Store once, instead of each instruction, to save space

• First execution
– Use symbolic name to find field or method

• Second execution
– Use modified “quick” instruction to simplify search

invokeinterface <method-spec>

• Sample code
void add2(Incrementable x) { x.inc(); x.inc(); }

• Search for method
– find class of the object operand (operand on stack)

• must implement the interface named in <method-
spec>

– search the method table for this class

– find method with the given name and signature

• Call the method
– Usual function call with new activation record, etc.

Why is search necessary?

interface Incrementable {
public void inc();

}
class IntCounter implements Incrementable {

public void add(int);
public void inc();

 public int value();
}
class FloatCounter implements Incrementable {

public void inc();
public void add(float);
public float value();

}

invokevirtual <method-spec>

• Similar to invokeinterface, but class is known

• Search for method
– search the method table of this class

– find method with the given name and signature

• Can we use static type for efficiency?
– Each execution of an instruction will be to object from

subclass of statically-known class

– Constant offset into vtable
• like C++, but dynamic linking makes search useful

first time

– See next slide

Bytecode rewriting:
invokevirtual

• After search, rewrite bytcode to use fixed offset
into the vtable. No search on second execution.

inv_virt_quick

vtable offset

Constant pool

“A.foo()”

Bytecode

invokevirtual

Bytecode rewriting:
invokeinterface

Cache address of method; check class on second use

inv_int_quick

Constant pool

“A.foo()”

Bytecode

invokeinterface “A.foo()”

Bytecode Verifier

• Let’s look at one example to see how this works

• Correctness condition
– No operations should be invoked on an object

– until it has been initialized

• Bytecode instructions
– new 〈class〉 allocate memory for object

– init 〈class〉 initialize object on top of stack

– use 〈class〉 use object on top of stack

Object creation

• Example:
Point p = new Point(3)

1: new Point

2: dup

3: iconst 3

4: init Point

• No easy pattern to match
• Multiple refs to same uninitialized object

– Need some form of alias analysis

Java source

bytecode

Alias Analysis

• Other situations:

 or

• Equivalence classes based on line where object
was created.

1: new P
2: new P
3: init P

init P

new P

Tracking initialize-before-use

• Alias analysis uses line numbers
– Two pointers to “unitialized object created at line 47”

are assumed to point to same object

– All accessible objects must be initialized before jump
backwards (possible loop)

• Oversight in treatment of local subroutines
– Used in implementation of try-finally

– Object created in finally not necessarily initialized

• No clear security consequence
– Bug fixed

 Have proved correctness of modified verifier for
init

variables 1 and 2 contain references
to two different objects which are both
“uninitialized object created on line 11”

Bug in Sun’s JDK 1.1.4

• Example:

1: jsr 10
2: store 1
3: jsr 10
4: store 2
5: load 2
6: init P
7: load 1
8: use P
9: halt

10: store 0
11: new P
12: ret 0

Implementing Generics

• Two possible implementations
– Heterogeneous: instantiate generics

– Homogeneous: translate generic class to standard class

class Stack {
 void push(Object o)

{ ... }
 Object pop() { ... }
 ...}

class Stack<A> {
 void push(A a) { ... }
 A pop() { ... }
 ...}

Idea: replace class parameter <A> by Object, insert casts

Example generic construct: Lists

• Lists possible for any type of object
– For any type t, can have type list_of_t

– Operations cons, head, tail work for any type

• Define generic list class
template <type t> class List {

private: t* data; List<t> * next;

public: void Cons (t* x) { … }

 t* Head () { … }

 List<t> Tail () { … }

};

Implementation Issues

• Data on heap, manipulated by pointer
– Every list cell has two pointers, data and next

– All pointers are same size

– Can use same representation, code for all types

• Data stored in local variables
– List cell must have space for data

– Different representation for different types

– Different code if offset built into code

“Homogeneous Implementation”

 Same representation and code for all types of data

data

next data

next • • •

“Heterogeneous
Implementation”

 Specialize representation, code according to type

• • •

next

next

next

• • •

next

Example: Hash Table

interface Hashable {

int HashCode ();

};

class HashTable < Key implements Hashable, Value> {

void Insert (Key k, Value v) {

int bucket = k.HashCode();

InsertAt (bucket, k, v);

}

…

};

Heterogeneous Implementation

• Compile generic class C<param>
– Check use of parameter type according to constraints

– Produce extended form of bytecode class file
• Store constraints, type parameter names in bytecode

file

• Expand when class C<actual> is loaded
– Replace parameter type by actual class

– Result is ordinary class file

– This is a preprocessor to the class loader:
• No change to the virtual machine
• No need for additional bytecodes

Generic bytecode with
placeholders

void Insert (Key k, Value v) {
int bucket = k.HashCode();
InsertAt (bucket, k, v);

}
Method void Insert($1, $2)

aload_1
invokevirtual #6 <Method $1.HashCode()I>
istore_3 aload_0 iload_3 aload_1 aload_2
invokevirtual #7 <Method HashTable<$1,$2>.

 InsertAt(IL$1;L$2;)V>
return

Instantiation of generic bytecode

void Insert (Key k, Value v) {
int bucket = k.HashCode();
InsertAt (bucket, k, v);

}
Method void Insert(Name, Integer)

aload_1
invokevirtual #6 <Method Name.HashCode()I>
istore_3 aload_0 iload_3 aload_1 aload_2
invokevirtual #7 <Method HashTable<Name,Integer>

 InsertAt(ILName;LInteger;)V>
return

Load parameterized class file

• Use of HashTable <Name, Integer> invokes
loader

• Several preprocess steps
– Locate bytecode for parameterized class, actual types

– Check the parameter constraints against actual class

– Substitute actual type name for parameter type

– Proceed with verifier, linker as usual.

• Can be implemented with ~500 lines Java code
– Portable, efficient, no need to change virtual machine

Java 1.5 Solution

• Homogeneous implementation

• Algorithm
– replace class parameter <A> by Object, insert casts
– if <A extends B>, replace A by B

• Why choose this implementation?
– Backward compatibility of distributed bytecode
– Surprise: faster because class loading is slow

class Stack {
 void push(Object o) { ... }
 Object pop() { ... }
 ...}

class Stack<A> {
 void push(A a) { ... }
 A pop() { ... }
 ...}

Some details that matter

• Allocation of static variables
– Heterogeneous: separate copy for each instance
– Homogenous: one copy shared by all instances

• Constructor of actual class parameter
– Heterogeneous: class G<T> … T x = new T;
– Homogenous: new T may just be Object !

• Resolve overloading
– Heterogeneous: could try to resolve at instantiation time

(C++)
– Homogenous: no information about type parameter

• When is template instantiated?
– Compile- or link-time (C++)
– Java alternative: class load time

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

• Generics (added in Java 1.5)
– Basics, wildcards, …

• Virtual machine
– Loader, verifier, linker, interpreter
– Bytecodes for method lookup
– Bytecode verifier (example: initialize before use)
– Implementation of generics

• Security issues

Java Security

• Security
– Prevent unauthorized use of computational resources

• Java security
– Java code can read input from careless user or malicious

attacker

– Java code can be transmitted over network –

 code may be written by careless friend or malicious
attacker

 Java is designed to reduce many security risks

Java Security Mechanisms

• Sandboxing
– Run program in restricted environment

• Analogy: child’s sandbox with only safe toys

– This term refers to
• Features of loader, verifier, interpreter that restrict

program
• Java Security Manager, a special object that acts as

access control “gatekeeper”

• Code signing
– Use cryptography to establish origin of class file

• This info can be used by security manager

Buffer Overflow Attack

• Most prevalent security problem today
– Approximately 80% of CERT advisories are related to

buffer overflow vulnerabilities in OS, other code

• General network-based attack
– Attacker sends carefully designed network msgs

– Input causes privileged program (e.g., Sendmail) to do
something it was not designed to do

• Does not work in Java
– Illustrates what Java was designed to prevent

Sample C code to illustrate
attack

void f (char *str) {
 char buffer[16];
 …
 strcpy(buffer,str);
}
void main() {
 char large_string[256];
 int i;
 for(i = 0; i < 255; i++)

large_string[i] = 'A';

 f(large_string);
}

• Function
– Copies str into buffer until null

character found
– Could write past end of buffer,

over function retun addr

• Calling program
– Writes 'A' over f activation

record
– Function f “returns” to

location 0x4141414141
– This causes segmentation fault

• Variations
– Put meaningful address in

string
– Put code in string and jump to

it !!

See: Smashing the stack for fun and profit

Java Sandbox

• Four complementary mechanisms
– Class loader

• Separate namespaces for separate class loaders
• Associates protection domain with each class

– Verifier and JVM run-time tests
• NO unchecked casts or other type errors, NO array

overflow
• Preserves private, protected visibility levels

– Security Manager
• Called by library functions to decide if request is

allowed
• Uses protection domain associated with code, user

policy
• Recall: stack inspection problem on midterm

Why is typing a security feature?

• Sandbox mechanisms all rely on type safety

• Example
– Unchecked C cast lets code make any system call

int (*fp)() /* variable "fp" is a function pointer
*/

...
fp = addr; /* assign address stored in an integer var

 */
(*fp)(n); /* call the function at this address

*/

 Other examples involving type confusion in book

Security Manager

• Java library functions call security manager

• Security manager object answers at run time
– Decide if calling code is allowed to do operation

– Examine protection domain of calling class
• Signer: organization that signed code before loading
• Location: URL where the Java classes came from

– Uses the system policy to decide access permission

Sample SecurityManager
methods

Checks if a network connection can be
created.

checkConnect

Check to prevent the installation of
additional ClassLoaders.

checkCreate
ClassLoader

Checks if a certain network port can be
listened to for connections.

checkListen

Checks if a file can be written to.checkWrite

Checks if a file can be read from.checkRead

Checks if the system commands can be
executed.

checkExec

Stack Inspection

• Permission depends on
– Permission of calling method

– Permission of all methods
above it on stack

• Up to method that is
trusted and asserts this
trust

Many details omitted here

java.io.FileInputStream

method f

method g

method h

Stories: Netscape font / passwd bug; Shockwave plug-in

Java Summary

• Objects
– have fields and methods

– alloc on heap, access by pointer, garbage collected

• Classes
– Public, Private, Protected, Package (not exactly C++)

– Can have static (class) members

– Constructors and finalize methods

• Inheritance
– Single inheritance

– Final classes and methods

Java Summary (II)

• Subtyping
– Determined from inheritance hierarchy

– Class may implement multiple interfaces

• Virtual machine
– Load bytecode for classes at run time

– Verifier checks bytecode

– Interpreter also makes run-time checks
• type casts
• array bounds
• …

– Portability and security are main considerations

Some Highlights

• Dynamic lookup
– Different bytecodes for by-class, by-interface
– Search vtable + Bytecode rewriting or caching

• Subtyping
– Interfaces instead of multiple inheritance
– Awkward treatment of array subtyping (my opinion)

• Generics
– Type checked, not instantiated, some limitations (<T>…

new T)

• Bytecode-based JVM
– Bytcode verifier
– Security: security manager, stack inspection

Comparison with C++

• Almost everything is object + Simplicity -
Efficiency
– except for values from primitive types

• Type safe + Safety +/- Code complexity -
Efficiency
– Arrays are bounds checked

– No pointer arithmetic, no unchecked type casts

– Garbage collected

• Interpreted + Portability + Safety - Efficiency
– Compiled to byte code: a generalized form of assembly

language designed to interpret quickly.

– Byte codes contain type information

Comparison (cont’d)

• Objects accessed by ptr + Simplicity - Efficiency
– No problems with direct manipulation of objects

• Garbage collection: + Safety + Simplicity -
Efficiency
– Needed to support type safety

• Built-in concurrency support + Portability
– Used for concurrent garbage collection (avoid waiting?)

– Concurrency control via synchronous methods

– Part of network support: download data while executing

• Exceptions
– As in C++, integral part of language design

Links

• Enhancements in JDK 5
– http://java.sun.com/j2se/1.5.0/docs/guide/language/inde

x.html

• J2SE 5.0 in a Nutshell
– http://java.sun.com/developer/technicalArticles/releases

/j2se15/

• Generics
– http://www.langer.camelot.de/Resources/Links/JavaGene

rics.htm

Declaring Generic classes
• For example a Coppia of two objects one of type E

and the other of type F
class Coppia<E,F>{
 E sinistro;
 F destro;

 Coppia(E a, F b){ ... }

 E getSinistro(){ return sinistro;}

}

	Java
	Outline
	Origins of the language
	Design Goals
	General design decisions
	Java System
	Java Release History
	Enhancements in JDK 5 (= Java 1.5)
	Outline
	Language Terminology
	Java Classes and Objects
	Point Class
	Object initialization
	Garbage Collection and Finalize
	Encapsulation and packages
	Visibility and access
	Inheritance
	Example subclass
	Class Object
	Constructors and Super
	Final classes and methods
	Slide 22
	Java Types
	Classification of Java types
	Subtyping
	Java class subtyping
	Slide 27
	Interface subtyping: example
	Properties of interfaces
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Array types
	Array subtyping
	Covariance problem again …
	Afterthought on Java arrays
	But compare this to C++!!
	Java Exceptions
	Exception Classes
	Try/finally blocks
	Why define new exception types?
	Slide 51
	Java Generic Programming
	Example generic construct: Stack
	Java 1.0 vs Generics
	Why no generics in early Java ?
	JSR 14 Java Generics (Java 1.5, “Tiger”)
	Java generics are type checked
	Slide 58
	Example: Hash Table
	Slide 60
	Slide 61
	Slide 62
	Priority Queue Example
	Another example …
	Implementing Generics
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Java Implementation
	Slide 71
	JVM memory areas
	Class loader
	Example issue in class loading and linking: Static members and initialization
	JVM Linker and Verifier
	Verifier
	Bytecode interpreter
	Type Safety of JVM
	JVM uses stack machine
	Field and method access
	invokeinterface <method-spec>
	Why is search necessary?
	invokevirtual <method-spec>
	Bytecode rewriting: invokevirtual
	Bytecode rewriting: invokeinterface
	Bytecode Verifier
	Object creation
	Alias Analysis
	Tracking initialize-before-use
	Bug in Sun’s JDK 1.1.4
	Slide 91
	Example generic construct: Lists
	Implementation Issues
	“Homogeneous Implementation”
	“Heterogeneous Implementation”
	Slide 96
	Heterogeneous Implementation
	Generic bytecode with placeholders
	Instantiation of generic bytecode
	Load parameterized class file
	Java 1.5 Solution
	Some details that matter
	Slide 103
	Java Security
	Java Security Mechanisms
	Buffer Overflow Attack
	Sample C code to illustrate attack
	Java Sandbox
	Why is typing a security feature?
	Security Manager
	Sample SecurityManager methods
	Stack Inspection
	Java Summary
	Java Summary (II)
	Some Highlights
	Comparison with C++
	Comparison (cont’d)
	Links
	Slide 119

