

Java

Angelo Gargantini

Informatica III /2006

Outline
• Language Overview

– History and design
goals

• Classes and
Inheritance
– Object features
– Encapsulation
– Inheritance

• Types and Subtyping
– Primitive and ref types
– Interfaces; arrays
– Exception hierarchy
– Subtype polymorphism

and generic
programming

• Virtual machine
overview
– Loader and initialization
– Linker and verifier
– Bytecode interpreter

• Method lookup
– four different bytecodes

• Verifier analysis
• Implementation of

generics
• Security

– Buffer overflow
– Java “sandbox”
– Type safety and attacks

Origins of the language

• James Gosling and others at Sun, 1990 - 95
• Oak language for “set-top box”

– small networked device with television display
• graphics
• execution of simple programs
• communication between local program and remote

site
• no “expert programmer” to deal with crash, etc.

• Internet application
– simple language for writing programs that can be

transmitted over network

Design Goals

• Portability
– Internet-wide distribution: PC, Unix, Mac

• Reliability
– Avoid program crashes and error messages

• Safety
– Programmer may be malicious

• Simplicity and familiarity
– Appeal to average programmer; less complex than C++

• Efficiency
– Important but secondary

General design decisions

• Simplicity
– Almost everything is an object

– All objects on heap, accessed through pointers

– No functions, no multiple inheritance, no go to, no
operator overloading, few automatic coercions

• Portability and network transfer
– Bytecode interpreter on many platforms

• Reliability and Safety
– Typed source and typed bytecode language

– Run-time type and bounds checks

– Garbage collection

Java System

• The Java programming language
• Compiler and run-time system

– Programmer compiles code

– Compiled code transmitted on network

– Receiver executes on interpreter (JVM)

– Safety checks made before/during execution

• Library, including graphics, security, etc.
– Large library made it easier for projects to adopt Java

– Interoperability
• Provision for “native” methods

Java Release History

• 1995 (1.0) – First public release
• 1997 (1.1) – Nested classes

– Support for function objects

• 2001 (1.4) – Assertions
– Verify programmers understanding of code

• 2004 (1.5) – Tiger
– Generics, foreach, Autoboxing/Unboxing,

– Typesafe Enums, Varargs, Static Import,

– Annotations, concurrency utility library

• 2006 (1.6) - Mustang

Improvements through Java Community Process

Enhancements in JDK 5 (= Java 1.5)
• Generics

– polymorphism and compile-time type safety
• Enhanced for Loop

– for iterating over collections and arrays
• Autoboxing/Unboxing

– automatic conversion between primitive, wrapper types
• Typesafe Enums

– enumerated types with arbitrary methods and fields
• Varargs

– puts argument lists into an array; variable-length
argument lists

• Static Import
– avoid qualifying static members with class names

• Annotations (Metadata)
– enables tools to generate code from annotations (JSR 175)

• Concurrency utility library, led by Doug Lea (JSR-166)

Outline

• Objects in Java
– Classes, encapsulation, inheritance

◆ Type system
• Primitive types, interfaces, arrays, exceptions

◆ Generics (added in Java 1.5)
• Basics, wildcards, …

◆ Virtual machine
• Loader, verifier, linker, interpreter
• Bytecodes for method lookup

◆ Security issues

Language Terminology

• Class, object - as in other languages
• Field – data member
• Method - member function
• Static members - class fields and methods
• this - self
• Package - set of classes in shared namespace
• Native method - method written in another

language, often C

Java Classes and Objects

• Syntax similar to C++
• Object

– has fields and methods

– is allocated on heap, not run-time stack

– accessible through reference (only ptr assignment)

– garbage collected

• Dynamic lookup
– Similar in behavior to other languages

– Static typing => more efficient than Smalltalk

– Dynamic linking, interfaces => slower than C++

Point Class

class Point {

 static public Point O = new Point(0);

 private int x;

 protected void setX (int y) {x = y;}

 public int getX() {return x;}

 Point(int xval) {x = xval;} // constructor

};

– Visibility similar to C++, but not exactly (later slide)

Object initialization

• Java guarantees constructor call for each object
– Memory allocated

– Constructor called to initialize memory

– Some interesting issues related to inheritance
 We’ll discuss later …

• Cannot do this (would be bad C++ style anyway):
– Obj* obj = (Obj*)malloc(sizeof(Obj));

• Static fields of class initialized at class load time
– Talk about class loading later

Garbage Collection and Finalize

• Objects are garbage collected
– No explicit free

– Avoids dangling pointers and resulting type errors

• Problem
– What if object has opened file or holds lock?

• Solution
– finalize method, called by the garbage collector

• Before space is reclaimed, or when virtual machine
exits

• Space overflow is not really the right condition to
trigger finalization when an object holds a lock...)

– Important convention: call super.finalize

Encapsulation and packages

• Every field, method
belongs to a class

• Every class is part of
some package
– Can be unnamed default

package

– File declares which
package code belongs to

package
class

field

method

package
class

field

method

Visibility and access

• Four visibility distinctions
– public, private, protected, package

• Method can refer to
– private members of class it belongs to

– non-private members of all classes in same package

– protected members of superclasses (in diff package)

– public members of classes in visible packages
Visibility determined by files system, etc. (outside

language)

• Qualified names (or use import)
– java.lang.String.substring()

package class method

Inheritance

• Similar to Smalltalk, C++
• Subclass inherits from superclass

– Single inheritance only (but Java has interfaces)

• Some additional features
– Conventions regarding super in constructor and finalize

 methods

– Final classes and methods

Example subclass

class ColorPoint extends Point {

 // Additional fields and methods

 private Color c;

 protected void setC (Color d) {c = d;}

 public Color getC() {return c;}

 // Define constructor

 ColorPoint(int xval, Color cval) {

 super(xval); // call Point constructor

 c = cval; } // initialize ColorPoint field

 };

Class Object

• Every class extends another class
– Superclass is Object if no other class named

• Methods of class Object
– getClass – return the Class object representing class of

the object
– toString – returns string representation of object

– equals – default object equality (not ptr equality)

– hashCode
– clone – makes a duplicate of an object
– wait, notify, notifyAll – used with concurrency
– finalize

Constructors and Super

• Java guarantees constructor call for each object
• This must be preserved by inheritance

– Subclass constructor must call super constructor
• If first statement is not call to super, then call super()

 inserted automatically by compiler
• If superclass does not have a constructor with no

args, then this causes compiler error (yuck)
• Exception to rule: if one constructor invokes another,

then it is responsibility of second constructor to call
super, e.g.,

 ColorPoint() { ColorPoint(0,blue);}
 is compiled without inserting call to super

• Different conventions for finalize and super
• Compiler does not force call to super finalize

Final classes and methods

• Restrict inheritance
– Final classes and methods cannot be redefined

• Example
 java.lang.String

• Reasons for this feature
– Important for security

• Programmer controls behavior of all subclasses
• Critical because subclasses produce subtypes

– Compare to C++ virtual/non-virtual
• Method is “virtual” until it becomes final

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

◆ Generics (added in Java 1.5)
• Basics, wildcards, …

◆ Virtual machine
• Loader, verifier, linker, interpreter
• Bytecodes for method lookup

◆ Security issues

Java Types
• Two general kinds of times

– Primitive types – not objects
• Integers, Booleans, etc

– Reference types
• Classes, interfaces, arrays
• No syntax distinguishing Object * from Object

• Static type checking
– Every expression has type, determined from its parts
– Some auto conversions, many casts are checked at run

time
– Example, assuming A <: B

• Can use A x and type
• If B x, then can try to cast x to A
• Downcast checked at run-time, may raise exception

Classification of Java types

Reference Types

Primitive Types

int

Shape

Object[]

Object

Shape[]

boolean …

Throwable

Square Square[]Circle Circle[]

longfloatbyte

Exception
types

user-defined arrays

Subtyping

• Primitive types
– Conversions: int -> long, double -> long, …

• Class subtyping similar to C++
– Subclass produces subtype
– Single inheritance => subclasses form tree

• Interfaces
– Completely abstract classes

• no implementation

– Multiple subtyping
• Interface can have multiple subtypes (extends,

implements)

• Arrays
– Covariant subtyping – not consistent with semantic

principles

Java class subtyping

• Signature Conformance
– Subclass method signatures must conform to those of

superclass

• Three ways signature could vary
– Argument types
– Return type
– Exceptions
 How much conformance is needed in principle?

• Java rule
– Java 1.1: Arguments and returns must have identical

types, may remove exceptions
– Java 1.5: covariant return type specialization

Covariance
• Covariance means that arguments, return values, or

exceptions of overriding methods can be of subtypes
of the original types.

• In Java 5 Parameter types have to be exactly the
same (invariant) for method overriding, otherwise the
method is overloaded with a parallel definition
instead.

class A {
 public A whoAreYou() {...}
}
class B extends A {
 // override A.whoAreYou *and* narrow the return type.
 public B whoAreYou() {...}
}

Interface subtyping: example

interface Shape {
public float center();

 public void rotate(float degrees);
}
interface Drawable {

public void setColor(Color c);
 public void draw();
}
class Circle implements Shape, Drawable {

// does not inherit any implementation
 // but must define Shape, Drawable methods
}

Properties of interfaces

• Flexibility
– Allows subtype graph instead of tree

– Avoids problems with multiple inheritance of
implementations (remember C++ “diamond”)

• Cost
– Offset in method lookup table not known at compile

– Different bytecodes for method lookup
• one when class is known
• one when only interface is known

– search for location of method
– cache for use next time this call is made (from this

line)

Overload vs Override
• Overlod = più metodi o costruttori con lo stesso

nome ma diversa segnatura
– Segnatura: nome del metodo e lista dei tipi dei suoi

argomenti

• L'overloading viene risolto in fase di compilazione
•
public static double valoreAssoluto(double x) {
if (x > 0) return x;
else return -x;
}
public static int valoreAssoluto(int x) {
return (int) valoreAssoluto((double) x);

Compilazione: scelta segnatura
• In compilazione viene scelta la segnatura del

metodo da eseguire in base:
(1) al tipo del riferimento utilizzato per invocare il

metodo
(2) al tipo degli argomenti indicati nella chiamata

Esempio
• A r;...
• r.m(2)
• Il compilatore cerca fra tutte le segnature di

metodi di nome m disponibili per il tipo A quella
“più adatta” per gli argomenti specificati

Esempio
A r;
...
r.m(2)
• Se le segnature disponibili per il tipo A sono:
int m(byte b)
int m(long l)
int m(double d)
• il compilatore sceglie la seconda

Overriding
• Quando si riscrive in una sottoclasse un metodo

della superclasse con la stessa segnatura.
• L’overriding viene risolto in fase di esecuzione
• Compilazione:
• scelta della segnatura: il compilatore stabilisce la

segnatura del metodo da eseguire (early binding)
• Esecuzione:
• scelta del metodo: Il metodo da eseguire, tra

quelli con la segnatura selezionata, viene scelto al
momento dell’esecuzione, sulla base del tipo
dell’oggetto (late binding)

Fase di compilazione
(1) Scelta delle segnature “candidate”
• Il compilatore individua le segnature che possono

soddisfare la chiamata
– (a) compatibile con gli argomenti utilizzati nella chiamata

il numero dei parametri nella segnatura `e uguale al numero
degli argomenti utilizzati ogni argomento `e di un tipo
assegnabile al corrispondente parametro

– (b) accessibile al codice chiamante

• Se non esistono segnature candidate, il
compilatore segnala un errore.

(2) Scelta della segnatura “pi`u specifica”
• Tra le segnature candidate, il compilatore

seleziona quella che richiede il minor numero di
promozioni

Esempio 1
A alfa;
- alfa.assegna(2)
Una segnatura candidata:

assegna(long x)
- alfa.assegna(2.0)
Nessuna segnatura

candidata (errore)

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)

Esempio 2
B beta;
beta.assegna(2)
Tre segnature candidate:
• assegna(int x)
• assegna(double x)
• assegna(long x)
• La pi`u specifica `e

assegna(int x)

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)

Ambiguità
• Se per l’invocazione:
• z(1, 2)
• le segnature candidate sono:
• z(double x, int y)
• z(int x, double y)
• Il compilatore non `e in grado di individuare la segnatura

pi`u specifica e segnala un messaggio di errore

Esecuzione: scelta del metodo
• La JVM sceglie il metodo da eseguire sulla base del

tipo dell’oggetto usato nell’invocazione
– cerca un metodo con la segnatura selezionata in

fase di compilazione
– risalendo la gerarchia delle classi a partire dalla

classe dell’oggetto che deve eseguire il metodo

Esempio 1
A alfa = new C()
alfa.assegna(2)
Una segnatura candidata:

assegna(long x)

Ricerca a partire da C un
metodo assegna(long)

Esegue il metodo di A anche
se 2 è int !!!

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)

Esempio 2
B beta = new C()
beta.assegna(2)
segnatura selezionata:

assegna(int x)

Ricerca a partire da C un
metodo assegna(int)

Esegue il metodo di C

A
assegna(x:long)

B
assegna(x:int)
assegna(x:double)

C
assegna(x:int)
assegna(x:double)

Attenzione
• Quando si ridefiniscono i metodi in java bisogna

usare la stessa segnatura !!
• Vedi il problema con equals
•
class A { int x; A(int y){x = y;}
 public equals(A a){ return (x == a.x);} }

Object a1 = new A(3);
A a2 = new A(3);
a1.equals(a2);

Array types

• Automatically defined
– Array type T[] exists for each class, interface type T

– Cannot extended array types (array types are final)

– Multi-dimensional arrays as arrays of arrays: T[] []

• Treated as reference type
– An array variable is a pointer to an array, can be null

– Example: Circle[] x = new Circle[array_size]

– Anonymous array expression: new int[] {1,2,3, ... 10}

• Every array type is a subtype of Object[], Object
– Length of array is not part of its static type

Array subtyping - covariance

• Covariance
– if S <: T then S[] <: T[]

• S <:T means “S is subtype of T”

• Standard type error
class A {…}

class B extends A {…}

B[] bArray = new B[10]
A[] aArray = bArray // considered OK since B[] <: A[]
aArray[0] = new A() // compiles, but run-time error

 // raises ArrayStoreException
// b/c aArray actually refers to an array of B objects
// so that assignment, aArray[0] = new A(); would violate

the type of bArray

Covariance problem again …

• Remember Simula problem
– If A <: B, then A ref <: B ref

– Needed run-time test to prevent bad assignment

– Covariance for assignable cells is not right in principle

• Explanation
– interface of “T reference cell” is

 put : T → T ref

 get : T ref → T

– Remember covariance/contravariance of functions

Afterthought on Java arrays

Date: Fri, 09 Oct 1998 09:41:05 -0600
From: bill joy
Subject: …[discussion about java genericity]

actually, java array covariance was done for less noble reasons
…: it made some generic "bcopy" (memory copy) and like
operations much easier to write...
I proposed to take this out in 95, but it was too late (...).
i think it is unfortunate that it wasn't taken out...
it would have made adding genericity later much cleaner, and
[array covariance] doesn't pay for its complexity today.

wnj

But compare this to C++!!

• Access by pointer: you can't do array subtyping.
B* barr[15];

A* aarr[] = barr; // not allowed

• Direct naming: allowed, but you get garbage !!
B barr[15];

A aarr[] = barr;

aarr[k] translates to *(aarr+sizeof(A)*k)
barr[k] translates to *(barr+sizeof(B)*k)
If sizeof(B) != sizeof(A), you just grab random
bits.

 Is there any sense to this?

Java Exceptions

• Similar basic functionality to ML, C++
– Constructs to throw and catch exceptions

– Dynamic scoping of handler

• Some differences
– An exception is an object from an exception class

– Subtyping between exception classes
• Use subtyping to match type of exception or pass it

on …
• Similar functionality to ML pattern matching in

handler

– Type of method includes exceptions it can throw
• Actually, only subclasses of Exception (see next

slide)

Exception Classes

• If a method may throw a checked exception, then
this must be in the type of the method

Throwable

Exception Runtime
Exception

Error

User-defined
exception classes

Unchecked exceptions

checked
exceptions

Try/finally blocks

• Exceptions are caught in try blocks
try {

statements

} catch (ex-type1 identifier1) {

statements

} catch (ex-type2 identifier2) {

statements

} finally {

statements

}

• Implementation: finally compiled to jsr

Why define new exception
types?

• Exception may contain data
– Class Throwable includes a string field so that cause of

exception can be described

– Pass other data by declaring additional fields or
methods

• Subtype hierarchy used to catch exceptions
catch <exception-type> <identifier> { … }

will catch any exception from any subtype of exception-
type and bind object to identifier

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

• Generics (added in Java 1.5)
– Basics, wildcards, …

◆ Virtual machine
◆

• Loader, verifier, linker, interpreter
• Bytecodes for method lookup

◆ Security issues

Java Generic Programming

• Java has class Object
– Supertype of all object types

– This allows “subtype polymorphism”
• Can apply operation on class T to any subclass S <: T

• Java 1.0 – 1.4 do not have templates
– No parametric polymorphism

– Many consider this the biggest deficiency of Java

• Java type system does not let you cheat
– Can cast from supertype to subtype

– Cast is checked at run time

Example generic construct:
Stack

• Stacks possible for any type of object
– For any type t, can have type stack_of_t

– Operations push, pop work for any type

• In C++, would write generic stack class
template <type t> class Stack {

private: t data; Stack<t> * next;
public: void push (t* x) { … }

 t* pop () { … }
};

• What can we do in Java?

Java 1.0 vs Generics
class Stack {
 void push(Object o)

{ ... }
 Object pop() { ... }
 ...}

String s = "Hello";
Stack st = new Stack();
...
st.push(s);
...
s = (String) st.pop();

class Stack<A> {
 void push(A a) { ... }
 A pop() { ... }
 ...}

String s = "Hello";
Stack<String> st =
 new

Stack<String>();
st.push(s);
...
s = st.pop();

Why no generics in early Java ?

• Many proposals
• Basic language goals seem clear
• Details take some effort to work out

– Exact typing constraints

– Implementation
• Existing virtual machine?
• Additional bytecodes?
• Duplicate code for each instance?
• Use same code (with casts) for all instances

Java Community proposal (JSR 14) incorporated into Java 1.5

 Java Generics (Java 1.5, “Tiger”)

• Adopts syntax on previous slide
• Adds auto boxing/unboxing

User conversion Automatic conversion

Stack<Integer> st =
 new Stack<Integer>();
st.push(new Integer(12));
...
int i = (st.pop()).intValue();

Stack<Integer> st =
 new Stack<Integer>();
st.push(12);
...
int i = st.pop();

Java generics are type checked

• A generic class may use operations on objects of
a parameter type
– Example: PriorityQueue<T> … if x.less(y) then …

• Two possible solutions
– C++: Link and see if all operations can be resolved

– Java: Type check and compile generics w/o linking
• This requires programmer to give information about

type parameter
• Example: PriorityQueue<T extends ...>

Constraints on generic types
• One can introduce constraints over a type used as

parameter in a generic class

< E extends T> : E must be a subtype of T
< E super T> : E must be a supertype of T

Example: Hash Table

interface Hashable {
int HashCode ();

};
class HashTable < Key extends Hashable, Value>

{
void Insert (Key k, Value v) {

int bucket = k.HashCode();
InsertAt (bucket, k, v);

}
…

};
This expression must typecheck

Use “Key extends Hashable”

Interface Comparable<T>
• imposes a total ordering on the objects of each

class that implements it (natural ordering)
• int compareTo(T o): comparison method

– compares this object with o and returns a negative
integer, zero, or a positive integer as this object is less
than, equal to, or greater than the specified object.

• Lists (and arrays) of objects that implement this
interface can be sorted automatically by
Collections.sort (and Arrays.sort).

• Objects that implement this interface can be used
as keys in a sorted map or elements in a sorted
set, without the need to specify a comparator.

compareTo
• The natural ordering for a class C is said to be

consistent with equals if and only if
(e1.compareTo((Object)e2) == 0) has the same
boolean value as e1.equals((Object)e2) for every
e1 and e2 of class C.

• Altri vincoli:
– sgn(x.compareTo(y)) == -sgn(y.compareTo(x))
– the relation must be transitive:
– (x.compareTo(y)>0 && y.compareTo(z)>0) implies

x.compareTo(z)>0.
– Finally, the implementer must ensure that

x.compareTo(y)==0 implies that
sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.

Example
Class MyClass implements

 Comparable<MyClass>{

 private int a;

 ...

 public int compareTo(MyClass other){

 return (this.a - other.a);

}

Priority Queue Example

Generic types often requests the implementation of
Comparable:

class PriorityQueue<T extends Comparable<T>> {

 T queue[] ; …

 void insert(T t) {

 ... if (t.compareTo(queue[i])) ...

 }

 T remove() { ... }

 ...

 }

Another example …

 interface LessAndEqual<I> {
 boolean lessThan(I);
 boolean equal(I);
 }
class Relations<C extends LessAndEqual<C>> extends C {
 boolean greaterThan(Relations<C> a) {
 return a.lessThan(this);
 }
 boolean greaterEqual(Relations<C> a) {
 return greaterThan(a) || equal(a);
 }
 boolean notEqual(Relations<C> a) { ... }
 boolean lessEqual(Relations<C> a) { ... }
 ...
 }

Implementing Generics

• Type erasure
– Compile-time type checking uses generics
– Compiler eliminates generics by erasing them

• Compile List<T> to List, T to Object, insert casts

• “Generics are not templates”
– Generic declarations are typechecked
– Generics are compiled once and for all

• No instantiation
• No “code bloat”

More later when we talk about virtual machine …

• Dichiara una classe A che ha come membro un intero

• Dichiara un classe B extends A che ha un metodo equals(B a)

• Dichiara una classe C extends A che ha un metodo
equals(Object)

• Implementa i metodi toString in modo che stampino “A”, “B”
e “C” e il valore dell'intero

• Dichiara una Lista di A usando i generici

• Inserisci qualche B e qualche C

• Stampa il contenuto della lista con un ciclo for each

• Domanda un intero x
– Scanner sc = new Scanner(System.in);
– int x = sc.nextInt();

• e cerca nella lista un elemento che sia equals a new A(x)
– usa for each e equals
– usa contains QUALI PROBLEMI HAI???

Esercizio

Enumeration
•In prior releases, the standard way to represent an
enumerated type was the int Enum pattern
// int Enum Pattern - has severe problems!

public static final int SEASON_WINTER = 0;

public static final int SEASON_SPRING = 1;

public static final int SEASON_SUMMER = 2;

public static final int SEASON_FALL = 3;

•Not typesafe
•No namespace - You must prefix constants of an int
enum with a string (in this case SEASON_)
•Printed values are uninformative

In Java5
public enum Season {
 WINTER, SPRING, SUMMER, FALL }

• Comparable
• toString which prints the name of the symbol
• static values method that returns an array

containing all of the values of the enum type in the
order they are declared
– for (Season s : Season.values()) ...

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

• Generics (added in Java 1.5)
– Basics, wildcards, …

• Virtual machine
– Loader, verifier, linker, interpreter
– Bytecodes for method lookup
– Bytecode verifier (example: initialize before use)
– Implementation of generics

◆ Security issues

Java Implementation

• Compiler and Virtual Machine
– Compiler produces bytecode

– Virtual machine loads classes on demand, verifies
bytecode properties, interprets bytecode

• Why this design?
– Bytecode interpreter/compilers used before

• Pascal “pcode”; Smalltalk compilers use bytecode

– Minimize machine-dependent part of implementation
• Do optimization on bytecode when possible
• Keep bytecode interpreter simple

– For Java, this gives portability
• Transmit bytecode across network

A.classA.java Java
Compiler

B.class

Loader

Verifier

Linker

Bytecode Interpreter

Java Virtual Machine

Compile source code

Network

Java Virtual Machine Architecture

JVM memory areas

• Java program has one or more threads
• Each thread has its own stack
• All threads share same heap

method
area heap Java

stacks
PC

registers

native
method
stacks

Class loader

• Runtime system loads classes as needed
– When class is referenced, loader searches for file of

compiled bytecode instructions

• Default loading mechanism can be replaced
– Define alternate ClassLoader object

• Extend the abstract ClassLoader class and
implementation

• ClassLoader does not implement abstract method
loadClass, but has methods that can be used to
implement loadClass

– Can obtain bytecodes from alternate source
• VM restricts applet communication to site that

supplied applet

Example issue in class loading and linking:

Static members and initialization

class ... {
 /* static variable with initial value */
 static int x = initial_value
 /* ---- static initialization block --- */
 static { /* code executed once, when loaded */ }

}

• Initialization is important
– Cannot initialize class fields until loaded

• Static block cannot raise an exception
– Handler may not be installed at class loading time

JVM Linker and Verifier

• Linker
– Adds compiled class or interface to runtime system

– Creates static fields and initializes them

– Resolves names
• Checks symbolic names and replaces with direct

references

• Verifier
– Check bytecode of a class or interface before loaded

– Throw VerifyError exception if error occurs

Verifier

• Bytecode may not come from standard compiler
– Evil hacker may write dangerous bytecode

• Verifier checks correctness of bytecode
– Every instruction must have a valid operation code

– Every branch instruction must branch to the start of
some other instruction, not middle of instruction

– Every method must have a structurally correct signature

– Every instruction obeys the Java type discipline

Last condition is fairly complicated .

Bytecode interpreter

• Standard virtual machine interprets instructions
– Perform run-time checks such as array bounds

– Possible to compile bytecode class file to native code

• Java programs can call native methods
– Typically functions written in C

• Multiple bytecodes for method lookup
– invokevirtual - when class of object known

– invokeinterface - when interface of object known

– invokestatic - static methods

– invokespecial - some special cases

Type Safety of JVM

• Run-time type checking
– All casts are checked to make sure type safe

– All array references are checked to make sure the array
index is within the array bounds

– References are tested to make sure they are not null
before they are dereferenced.

• Additional features
– Automatic garbage collection

– No pointer arithmetic

 If program accesses memory, that memory is allocated to
the program and declared with correct type

JVM uses stack machine

• Java
Class A extends Object {
 int i
 void f(int val) { i = val +

1;}
}

• Bytecode
Method void f(int)
 aload 0 ; object ref this
 iload 1 ; int val
 iconst 1
 iadd ; add val +1
 putfield #4 <Field int i>
 return

data
area

local
variables

operand
stack

Return addr,
exception info,
Const pool res.

JVM Activation Record

refers to const pool

Field and method access

• Instruction includes index into constant pool
– Constant pool stores symbolic names

– Store once, instead of each instruction, to save space

• First execution
– Use symbolic name to find field or method

• Second execution
– Use modified “quick” instruction to simplify search

invokeinterface <method-spec>

• Sample code
void add2(Incrementable x) { x.inc(); x.inc(); }

• Search for method
– find class of the object operand (operand on stack)

• must implement the interface named in <method-
spec>

– search the method table for this class

– find method with the given name and signature

• Call the method
– Usual function call with new activation record, etc.

Why is search necessary?

interface Incrementable {
public void inc();

}
class IntCounter implements Incrementable {

public void add(int);
public void inc();

 public int value();
}
class FloatCounter implements Incrementable {

public void inc();
public void add(float);
public float value();

}

invokevirtual <method-spec>

• Similar to invokeinterface, but class is known
• Search for method

– search the method table of this class

– find method with the given name and signature

• Can we use static type for efficiency?
– Each execution of an instruction will be to object from

subclass of statically-known class

– Constant offset into vtable
• like C++, but dynamic linking makes search useful

first time

– See next slide

Bytecode rewriting:
invokevirtual

• After search, rewrite bytcode to use fixed offset
into the vtable. No search on second execution.

inv_virt_quick

vtable offset

Constant
pool

“A.foo()”

Bytecode

invokevirtual

Bytecode rewriting:
invokeinterface

Cache address of method; check class on second use

inv_int_quick

Constant
pool

“A.foo()”

Bytecode

invokeinterface “A.foo()”

Bytecode Verifier

• Let’s look at one example to see how this works
• Correctness condition

– No operations should be invoked on an object

– until it has been initialized

• Bytecode instructions
– new 〈class〉 allocate memory for object

– init 〈class〉 initialize object on top of stack

– use 〈class〉 use object on top of stack

Object creation

• Example:
Point p = new Point(3)

1: new Point

2: dup

3: iconst 3

4: init Point

• No easy pattern to match
• Multiple refs to same uninitialized object

– Need some form of alias analysis

Java source

bytecode

Alias Analysis

• Other situations:

 or

• Equivalence classes based on line where object
was created.

1: new P
2: new P
3: init P

init P

new P

Tracking initialize-before-use

• Alias analysis uses line numbers
– Two pointers to “unitialized object created at line 47”

are assumed to point to same object

– All accessible objects must be initialized before jump
backwards (possible loop)

• Oversight in treatment of local subroutines
– Used in implementation of try-finally
– Object created in finally not necessarily initialized

• No clear security consequence
– Bug fixed

 Have proved correctness of modified verifier for init

variables 1 and 2 contain references
to two different objects which are both
“uninitialized object created on line 11”

Bug in Sun’s JDK 1.1.4

• Example:

1: jsr 10
2: store 1
3: jsr 10
4: store 2
5: load 2
6: init P
7: load 1
8: use P
9: halt

10: store 0
11: new P
12: ret 0

Implementing Generics

• Two possible implementations
– Heterogeneous: instantiate generics

– Homogeneous: translate generic class to standard class

class Stack {
 void push(Object o) { ... }
 Object pop() { ... }
 ...}

class Stack<A> {
 void push(A a) { ... }
 A pop() { ... }
 ...}

Idea: replace class parameter <A> by Object, insert casts

Example generic construct: Lists

• Lists possible for any type of object
– For any type t, can have type list_of_t

– Operations cons, head, tail work for any type

• Define generic list class
template <type t> class List {

private: t* data; List<t> * next;

public: void Cons (t* x) { … }

 t* Head () { … }

 List<t> Tail () { … }

};

Implementation Issues

• Data on heap, manipulated by pointer
– Every list cell has two pointers, data and next

– All pointers are same size

– Can use same representation, code for all types

• Data stored in local variables
– List cell must have space for data

– Different representation for different types

– Different code if offset built into code

“Homogeneous Implementation”

 Same representation and code for all types of data

data

next data

next • • •

“Heterogeneous
Implementation”

 Specialize representation, code according to type

• • •

next

next

next

• • •

next

Example: Hash Table

interface Hashable {

int HashCode ();

};

class HashTable < Key implements Hashable, Value> {

void Insert (Key k, Value v) {

int bucket = k.HashCode();

InsertAt (bucket, k, v);

}

…

};

Heterogeneous Implementation

• Compile generic class C<param>
– Check use of parameter type according to constraints

– Produce extended form of bytecode class file
• Store constraints, type parameter names in bytecode

file

• Expand when class C<actual> is loaded
– Replace parameter type by actual class

– Result is ordinary class file

– This is a preprocessor to the class loader:
• No change to the virtual machine
• No need for additional bytecodes

Generic bytecode with
placeholders

void Insert (Key k, Value v) {
int bucket = k.HashCode();
InsertAt (bucket, k, v);

}
Method void Insert($1, $2)

aload_1
invokevirtual #6 <Method $1.HashCode()I>
istore_3 aload_0 iload_3 aload_1 aload_2
invokevirtual #7 <Method HashTable<$1,$2>.

 InsertAt(IL$1;L$2;)V>
return

Instantiation of generic bytecode

void Insert (Key k, Value v) {
int bucket = k.HashCode();
InsertAt (bucket, k, v);

}
Method void Insert(Name, Integer)

aload_1
invokevirtual #6 <Method Name.HashCode()I>
istore_3 aload_0 iload_3 aload_1 aload_2
invokevirtual #7 <Method HashTable<Name,Integer>

 InsertAt(ILName;LInteger;)V>
return

Load parameterized class file

• Use of HashTable <Name, Integer> invokes
loader

• Several preprocess steps
– Locate bytecode for parameterized class, actual types

– Check the parameter constraints against actual class

– Substitute actual type name for parameter type

– Proceed with verifier, linker as usual.

• Can be implemented with ~500 lines Java code
– Portable, efficient, no need to change virtual machine

Java 1.5 Solution

• Homogeneous implementation

• Algorithm
– replace class parameter <A> by Object, insert casts
– if <A extends B>, replace A by B

• Why choose this implementation?
– Backward compatibility of distributed bytecode
– Surprise: faster because class loading is slow

class Stack {
 void push(Object o) { ... }
 Object pop() { ... }
 ...}

class Stack<A> {
 void push(A a) { ... }
 A pop() { ... }
 ...}

Some details that matter

• Allocation of static variables
– Heterogeneous: separate copy for each instance
– Homogenous: one copy shared by all instances

• Constructor of actual class parameter
– Heterogeneous: class G<T> … T x = new T;
– Homogenous: new T may just be Object !

• Resolve overloading
– Heterogeneous: could try to resolve at instantiation time

(C++)
– Homogenous: no information about type parameter

• When is template instantiated?
– Compile- or link-time (C++)
– Java alternative: class load time

Outline

• Objects in Java
– Classes, encapsulation, inheritance

• Type system
– Primitive types, interfaces, arrays, exceptions

• Generics (added in Java 1.5)
– Basics, wildcards, …

• Virtual machine
– Loader, verifier, linker, interpreter
– Bytecodes for method lookup
– Bytecode verifier (example: initialize before use)
– Implementation of generics

• Security issues

Java Security

• Security
– Prevent unauthorized use of computational resources

• Java security
– Java code can read input from careless user or malicious

attacker

– Java code can be transmitted over network –

 code may be written by careless friend or malicious
attacker

 Java is designed to reduce many security risks

Java Security Mechanisms

• Sandboxing
– Run program in restricted environment

• Analogy: child’s sandbox with only safe toys

– This term refers to
• Features of loader, verifier, interpreter that restrict

program
• Java Security Manager, a special object that acts as

access control “gatekeeper”

• Code signing
– Use cryptography to establish origin of class file

• This info can be used by security manager

Buffer Overflow Attack

• Most prevalent security problem today
– Approximately 80% of CERT advisories are related to

buffer overflow vulnerabilities in OS, other code

• General network-based attack
– Attacker sends carefully designed network msgs

– Input causes privileged program (e.g., Sendmail) to do
something it was not designed to do

• Does not work in Java
– Illustrates what Java was designed to prevent

Sample C code to illustrate
attack

void f (char *str) {
 char buffer[16];
 …
 strcpy(buffer,str);
}
void main() {
 char large_string[256];
 int i;
 for(i = 0; i < 255; i++)

large_string[i] = 'A';

 f(large_string);
}

• Function
– Copies str into buffer until null

character found
– Could write past end of buffer,

over function retun addr

• Calling program
– Writes 'A' over f activation

record
– Function f “returns” to

location 0x4141414141
– This causes segmentation fault

• Variations
– Put meaningful address in

string
– Put code in string and jump to

it !!

See: Smashing the stack for fun and profit

Java Sandbox

• Four complementary mechanisms
– Class loader

• Separate namespaces for separate class loaders
• Associates protection domain with each class

– Verifier and JVM run-time tests
• NO unchecked casts or other type errors, NO array

overflow
• Preserves private, protected visibility levels

– Security Manager
• Called by library functions to decide if request is

allowed
• Uses protection domain associated with code, user

policy
• Recall: stack inspection problem on midterm

Why is typing a security feature?

• Sandbox mechanisms all rely on type safety
• Example

– Unchecked C cast lets code make any system call

int (*fp)() /* variable "fp" is a function pointer
*/

...
fp = addr; /* assign address stored in an integer var

 */
(*fp)(n); /* call the function at this address

*/

 Other examples involving type confusion in book

Security Manager

• Java library functions call security manager
• Security manager object answers at run time

– Decide if calling code is allowed to do operation

– Examine protection domain of calling class
• Signer: organization that signed code before loading
• Location: URL where the Java classes came from

– Uses the system policy to decide access permission

Sample SecurityManager
methods

Checks if a network connection can be created.checkConnect

Check to prevent the installation of additional
ClassLoaders.

checkCreate
ClassLoader

Checks if a certain network port can be listened
to for connections.

checkListen

Checks if a file can be written to.checkWrite

Checks if a file can be read from.checkRead

Checks if the system commands can be
executed.

checkExec

Stack Inspection

• Permission depends on
– Permission of calling method

– Permission of all methods
above it on stack

• Up to method that is
trusted and asserts this
trust

Many details omitted here

java.io.FileInputStream

method f

method g

method h

Stories: Netscape font / passwd bug; Shockwave plug-in

Java Summary

• Objects
– have fields and methods

– alloc on heap, access by pointer, garbage collected

• Classes
– Public, Private, Protected, Package (not exactly C++)

– Can have static (class) members

– Constructors and finalize methods

• Inheritance
– Single inheritance

– Final classes and methods

Java Summary (II)

• Subtyping
– Determined from inheritance hierarchy

– Class may implement multiple interfaces

• Virtual machine
– Load bytecode for classes at run time

– Verifier checks bytecode

– Interpreter also makes run-time checks
• type casts
• array bounds
• …

– Portability and security are main considerations

Some Highlights

• Dynamic lookup
– Different bytecodes for by-class, by-interface
– Search vtable + Bytecode rewriting or caching

• Subtyping
– Interfaces instead of multiple inheritance
– Awkward treatment of array subtyping (my opinion)

• Generics
– Type checked, not instantiated, some limitations (<T>…

new T)

• Bytecode-based JVM
– Bytcode verifier
– Security: security manager, stack inspection

Comparison with C++

• Almost everything is object + Simplicity -
Efficiency
– except for values from primitive types

• Type safe + Safety +/- Code complexity -
Efficiency
– Arrays are bounds checked

– No pointer arithmetic, no unchecked type casts

– Garbage collected

• Interpreted + Portability + Safety - Efficiency
– Compiled to byte code: a generalized form of assembly

language designed to interpret quickly.

– Byte codes contain type information

Comparison (cont’d)

• Objects accessed by ptr + Simplicity - Efficiency
– No problems with direct manipulation of objects

• Garbage collection: + Safety + Simplicity -
Efficiency
– Needed to support type safety

• Built-in concurrency support + Portability
– Used for concurrent garbage collection (avoid waiting?)

– Concurrency control via synchronous methods

– Part of network support: download data while executing

• Exceptions
– As in C++, integral part of language design

Links

• Enhancements in JDK 5
– http://java.sun.com/j2se/1.5.0/docs/guide/language/inde

x.html

• J2SE 5.0 in a Nutshell
– http://java.sun.com/developer/technicalArticles/releases

/j2se15/

• Generics
– http://www.langer.camelot.de/Resources/Links/JavaGene

rics.htm

Declaring Generic classes
• For example a Coppia of two objects one of type E

and the other of type F
class Coppia<E,F>{

 E sinistro;

 F destro;

 Coppia(E a, F b){ ... }

 E getSinistro(){ return sinistro;}

}

