

Design Pattern

Capitolo 10, sezione 10.4 esercizi 10.3 e altri

Singleton 10.4 (pag 291)
• A single instance of the class
• In Java

– private constructor
– static member
class A{

 private A(){...}

public static A instance = new A();

}

Visitor Pattern es. 10.3

Synopsis

• Represent an operation to be performed on the elements
of an object structure. Visitor lets you define a new
operation without changing the classes of the elements
on which it operates.

Visitor Pattern
• Problem

 Operations on collections of objects may not apply to all
objects, or apply differently to different objects

• Context
 Object interfaces are fixed and diverse
 Need to allow new operations, without polluting” their

classes with these operations.

• Solution
 Represent operations to be performed as visitors, with the

interface of every visitor representing the different kinds of
objects

Context

• You should use the Visitor pattern when:
– An object contains many classes of objects with

differing interfaces.
– Many distinct and unrelated operations need to be

performed on an object structure, and you want to
avoid “polluting” their classes with these
operations.

– The classes defining the object structure rarely
change, but you often want to define new
operations over the structure.

Visitor Pattern Diagram

Client Visitor

+ VisitConcreteElementA(in ConcreteElementA)
+ VisitConcreteElementB(in ConcreteElementB)

+ VisitConcreteElementA(in ConcreteElementA)
+ VisitConcreteElementB(in ConcreteElementB)

ConcreteVisitor1

+ VisitConcreteElementA(in ConcreteElementA)
+ VisitConcreteElementB(in ConcreteElementB)

ConcreteVisitor2

ObjectStructure Element

+ Accept(in Visitor : Visitor)

ConcreteElementA ConcreteElementB

+ Accept(in visitor : Visitor)
+ OperationA()

+ Accept(in visitor : Visitor)
+ OperationB()

Visitor.VisitConcreteElementA(this) Visitor.VisitConcreteElementB(this)

Visitor Example

• Imagine you have a department, with two type
of employee’s managers and engineer’s.

• You want to take a survey of your employee’s
to see how you can make there workplace
better.

• The best way to do this is to have a consultant
(visitor) come in and conduct the survey rather
then having the two different types of do it
themselves.

Visitor Example

Client Department

EscortVisitor

Visitor

visit(Mgr)
visit(Engnr)

Consultant

visit(Mgr)
visit(Engnr)

Employee

accept
ReceivePay

Manager

accept
ReceivePay

Engineer

accept
ReceivePay

Visitor Structure

• Different elements have different concrete
interfaces

• Element abstract base class adds accept
interface

• Double hand-shake between concrete
element and visitor allows visitor to call the
appropriate concrete element method

Element

accept () = 0;

ElementA

accept (); A_method ();

Visitor

ConcreteVisitor

visitA () = 0;
visitB () = 0;

visitA ();
visitB ();

ElementB

accept (); B_method ();

lato Visitable

• Le classi della gerarchia devono essere visitabili:

interface Visitable {
 void accept(Visitor v);
}
• ogni classe originale deve implementare visitable (un

metodo accept):

class Employee implements Visitable{
…
 accept(Visitor v){ v.visit(this);}
}

lato visitor

• consultant deve essere un visitor
public interface Visitor {
 public void visit(Manager m);
 public void visit(Engineer m);
}
public class Consultant implements Visitor{
 public void visit(Engineer m){
 System.out.println("consulting engineer");

 }
 public void visit(Manager m){
 System.out.println("consulting manager");

 }

Visitor Interactions

visit(Manager);

accept (Consultant);

Engineer ConsultantManager

visit(Engineer);

accept (Consultant);

Visitor Example

• After the consultant surveys the employee’s,
the managers realizes that the employee’s are
both stressed and having financial troubles.

• So the managers then bring in a masseuse to
help relieve stress at the office. They also have
the finance guy go around and talk to the
employee’s to help them out.

BASTA AGGIUNGERE UN ALTRO
VISITOR

Visitor Example

Client Department

EscortVisitor

Visitor

VisitMgr
VisitEngnr

Consultant Finance Guy

VisitMgr
VisitEngnr

VisitMgr
VisitEngnr

Employee

AcceptVisit
ReceivePay

Manager

AcceptVisit
ReceivePay

Engineer

AcceptVisit
ReceivePay

Masseuse

VisitMgr
VisitEngnr

Implementation

• Esercizio 10.3 con Expression

Consequences

• Positive

– Visitor makes adding new operations easy, simply
add a new visitor that implements that operation.

– Visitor gathers related operations and separates
unrelated ones.

Consequences

• Negative
– Visitor is not good for the situation where "visited"

classes are not stable. Every time a new Composite
hierarchy derived class is added, every Visitor derived
class must be amended

– Often encapsulation is broken because the element
class is forced to provide public operations that access
internal state.

– If using an existing system changes will be required to
existing code.

Related Patterns

• Iterator
– The iterator pattern is an alternative to the Visitor

pattern when the object structure to be navigated has a
linear structure.

• Composite
– The visitor pattern is often used with object structures

that are organized according to the composite pattern.

Come fare restituire un valore da
un visitor

Normalmente il visitor non restituisce niente. E
se devo calcolare qualcosa: come fare? due
alternative

.2 modifica di visit
 definire i metodi visit che restutiscano un valore
 ad esempio restituiscano un Object

 Object visit(X…);
 poi faccio il cast sapendo cosa effettivamente

restituisce

.3 aggiungere un campo e un metodo
 campo result, che viene settato alla fine della

visita
 getResult che restituisce il risultato della visita

visitor e generics

• L'alternativa è dichiarare il Visitor generico
rispetto il tipo che restituisce:

public interface Visitor <T> {

 public T visit(Manager m);

 public T visit(Engineer e);

}

// if the visitor returns a String
public class Consultant implements Visitor<String>{

 public String visit(Engineer m){
 return "consulting engineer"); }

....

Generic Visitable
• And a generic Visitable with a generic method

interface Visitable{

 public <T> T accept(Visitor<T> ask);

}
class Manager implements Visitable{

 public <T> T accept(Visitor<T> ask){

 return ask.visit(this);

 }
} ...

