
eXtreme Programming

Angelo Gargantini

Informatica 3 1005/2006

eXtreme programming ­ principles & practices

Materiale
• Questi lucidi + appunti
• extremeprogramming.org

– In inglese

eXtreme programming ­ principles & practices

XP Practices

1. Planning game.
2. Small releases.
3. Metaphor.
4. Simple design.
5. Tests.
6. Refactoring.
7. Pair programming.

1. Continuous
integration.

2. Collective
ownership.

3. On-site customer.
4. 40-hour weeks.
5. Open workspace.
6. Just rules.

eXtreme programming ­ principles & practices

Planning game

• How to plan?
– Create and prioritize user stories - customer

– Estimate difficulties - developers

– Select stories for next release - customer

– Split stories into tasks - developers

– Plan the tasks for the next iteration - customer/developers

eXtreme programming ­ principles & practices

Small Releases

• My program is all or nothing! Wrong! Inside
every large program there are lots of little
programs trying to get out. Make them into
small releases.

• Make as many iterations as possible per
release

• Keep good track of progress

• Deliver business value to the customer fast

• Gives sense of accomplishment to the team

• Keep the team focused

eXtreme programming ­ principles & practices

Customer on-site

• Customer or Developer on-site?
• Get the user stories
• Make him determine priorities – high business value

first
• Get him to give you immediate and frequent

feedback
• Involve him into specification of functional

acceptance tests

eXtreme programming ­ principles & practices

Test First

• Test-Driven development
– Design a test that will fail
– Compile it and check that it fails
– Write just enough code to make the test run

• Design evolves from tests
• The benefit must be higher than the cost
• Testing slows you down?
• Apply same quality standards for test and

code
• Tests ARE documentation
• Automate

eXtreme programming ­ principles & practices

Test first: JUnit/NUnit

• Unit tests framework
• Write tests
• Execute tests
• Assert results
• Show tests failure/success
• Keep the bar green

– http://junit.sourceforge.net/

– http://nunit.org/default.htm

eXtreme programming ­ principles & practices

Code refactoring

Fowler says that refactoring is the
"... process of changing a software system in such

a way that it does not alter the external
behavior of the code yet improves its internal
structure."

Just cleaning up code.

Why Refactor?
• To improve the quality of the codebase
• Makes software easier to understand
• This in turn helps in finding bugs
• .. and in turn allows you to program faster in the

end.

eXtreme programming ­ principles & practices

Code refactoring

• Contrary to idealized development strategy:
 analysis and design
 code
 test

• At first, code is pretty good but as
requirements change or new features are
added, the code structure tends to atrophy.
Refactoring is the process of fixing a bad or
chaotic design.

• Amounts to moving methods around, creating
new methods, adding or deleting classes, ...

eXtreme programming ­ principles & practices

tool: RefactorIT

Rename
Renames a method, field, type, package or
prefix. Updates all references.

Move Class
Moves a class or interface into another
package.

Encapsulate Field
Replaces direct field usage with corresponding
accessor methods.

Extract Method
Analyzes the selected piece of code and
extracts it into a separate method.

eXtreme programming ­ principles & practices

tool: RefactorIT

Extract Super-class/Interface
Extracts selected methods and fields into new
superclass or interface.

Minimize Access Rights
Determines the minimal access modifiers for class
fields and methods. Automatically changes selected
modifiers.

 Create Constructor
Creates a simple constructor on group of field
declarations that initializes these fields.

eXtreme programming ­ principles & practices

Simple design

• How to achieve this?
– Evolutionary design – design evolves while coding

and refactoring

– If you don’t need it now, you won’t need it ever
-develop only functionality that is required

– Satisfy tests in the simplest possible way

– Refactoring as soon as the tests run

• And again – keep it as simple as possible!

eXtreme programming ­ principles & practices

System Metaphor

• What?
• Everybody is involved, everybody is

interested
• Everybody understands and is responsible

for:
– Base architecture

– Whole system

• How?
– Don’t separate the team into designers and coders

– Change pairs often

eXtreme programming ­ principles & practices

Pair programming

• Why?
– 2 > 1
– Two programmers will understand the code
– Keeps programmers focused

• When do it?
– XP says always
– Is it possible in real life? Is it really necessary all

the time?

eXtreme programming ­ principles & practices

Continuous Integration

• You can’t put it off forever. Better do it all the time

• Spare yourself the Big Bang disaster

• Keep the tests working 100% during the integration

• Use a dedicated integrated machine

• Keep the build time low

• Automate through scripts, tools, etc…

eXtreme programming ­ principles & practices

Collective Code Ownership

• This is not my object! WRONG!

• Use version control system – CVS, VSS, …

• You brake it, you fix it

eXtreme programming ­ principles & practices

Coding Standards

• I can always read my own code. Wait, it’s all
my code!

• Let the team setup coding standards prior to
coding and agree on them

• Force coding standards application, no
exceptions

• Keep it simple

eXtreme programming ­ principles & practices

40 hour week

• Tired people make mistakes

• Tired people tend to overlook things like testing,
refactoring, etc.

• Work at maximum concentration 8 hours per day

• 6 PM – you are tired, go home

• Don’t work more than 1 consecutive week of
overtime

JUnit

eXtreme programming ­ principles & practices

Test suites

• build a test suite: a set of tests that can be run
at any time

• Disadvantages of a test suite
– It’s a lot of extra programming

• This is true, but use of a good test framework can help
quite a bit

– You don’t have time to do all that extra work
• False--Experiments repeatedly show that test suites

reduce debugging time more than the amount spent
building the test suite

• Advantages of a test suite
– Reduces total number of bugs in delivered code
– Makes code much more maintainable and refactorable

• This is a huge win for programs that get actual use!

eXtreme programming ­ principles & practices

XP approach to testing

• Tests are written before the code itself
• If code has no automated test case, it is

assumed not to work
• A test framework is used so that automated

testing can be done after every small change to
the code
– This may be as often as every 5 or 10 minutes

• If a bug is found after development, a test is
created to keep the bug from coming back

• Consequences
– Fewer bugs
– More maintainable code
– Continuous integration--During development, the

program always works--it may not do everything
required, but what it does, it does right

eXtreme programming ­ principles & practices

JUnit

• JUnit is a framework for writing tests
– written by Erich Gamma (of Design Patterns fame) and

Kent Beck (creator of XP methodology)
– uses Java’s reflection capabilities (Java programs can

examine their own code),
– helps the programmer:

• define and execute tests and test suites
• formalize requirements and clarify architecture
• write and debug code
• integrate code and always be ready to release a

working version
– BlueJ, JBuilder, Netbeans, and Eclipse provide JUnit tools

eXtreme programming ­ principles & practices

Terminology
• A test fixture sets up the data (both objects and

primitives) that are needed to run tests
– Example: If you are testing code that updates an

employee record, you need an employee record to test it
on

• A unit test is a test of a single class
• A test case tests the response of a single method

to a particular set of inputs
• A test suite is a collection of test cases
• A test runner is software that runs tests and

reports results
– An integration test is a test of how well classes work

together
– JUnit provides some limited support for integration tests

eXtreme programming ­ principles & practices

Structure of a JUnit test class

• Suppose you want to test a class named
Fraction

• public class FractionTest
 extends junit.framework.TestCase {
– This is the unit test for the Fraction class; it declares

(and possibly defines) values used by one or more
tests

• public FractionTest() { }
– This is the default constructor

eXtreme programming ­ principles & practices

Structure of a JUnit test class

• protected void setUp()
– Creates a test fixture by creating and initializing

objects and values
– non vediamo

• protected void tearDown()
– Releases any system resources used by the test

fixture
– non vediamo

• public void testAdd(), public void testToString(), etc.
– These methods contain tests for the Fraction

methods add(), toString(), etc. (note how
capitalization changes)

– non vediamo
• public Test suite()

eXtreme programming ­ principles & practices

Assert methods I

• Within a test,
– Call the method being tested and get the actual result
– assert what the correct result should be with one of

the provided assert methods
– These steps can be repeated as many times as

necessary

• An assert method is a JUnit method that
performs a test, and throws an
AssertionFailedError if the test fails
– JUnit catches these Errors and shows you the result

eXtreme programming ­ principles & practices

Assert methods I

• static void assertTrue(boolean test)
static void assertTrue(String message, boolean
test)
 Throws an AssertionFailedError if the test fails
 The optional message is included in the Error

• static void assertFalse(boolean test)
static void assertFalse(String message, boolean
test)
 Throws an AssertionFailedError if the test fails

eXtreme programming ­ principles & practices

Example: Counter class

• For the sake of example, we will create and
test a trivial “counter” class
– The constructor will create a counter and set it to

zero
– The increment method will add one to the counter and

return the new value
– The decrement method will subtract one from the

counter and return the new value

• We write the test methods before we write the
code
– This has the advantages described earlier
– Depending on the JUnit tool we use, we may have to

create the class first, and we may have to populate it
with stubs (methods with empty bodies)

eXtreme programming ­ principles & practices

JUnit tests for Counter
 public class CounterTest extends junit.framework.TestCase {

 Counter counter1;

 public CounterTest() {
 counter1 = new Counter();
 }

 public void testIncrement() {
 assertTrue(counter1.increment() == 1);
 assertTrue(counter1.increment() == 2);
 }

 public void testDecrement() {
 assertTrue(counter1.decrement() == -1);
 }
}

Note that each test begins
with a brand new counter

This means you don’t
have to worry about the
order in which the tests
are run

eXtreme programming ­ principles & practices

The Counter class itself

 public class Counter {
int count = 0;

public int increment() {
 return ++count;
}

public int decrement() {
 return --count;
}

 public int getCount() {
 return count;
 }
}

• Is JUnit testing overkill for this
little class?

• The Extreme Programming
view is: If it isn’t tested,
assume it doesn’t work

• You are not likely to have
many classes this trivial in a
real program, so writing JUnit
tests for those few trivial
classes is no big deal

• Often even XP programmers
don’t bother writing tests for
simple getter methods such as
getCount()

• We only used assertTrue in
this example, but there are
additional assert methods

eXtreme programming ­ principles & practices

Assert methods II

• assertEquals(expected, actual)
assertEquals(String message, expected, actual)
– This method is heavily overloaded: arg1 and arg2

must be both objects or both of the same primitive
type

– For objects, uses your equals method, if you have
defined it properly, as public boolean equals(Object o)--
otherwise it uses ==

eXtreme programming ­ principles & practices

Assert methods II

• assertSame(Object expected, Object actual)
assertSame(String message, Object expected,
Object actual)
 Asserts that two objects refer to the same object

(using ==)

• assertNotSame(Object expected, Object actual)
assertNotSame(String message, Object expected,
Object actual)
 Asserts that two objects do not refer to the same

object

eXtreme programming ­ principles & practices

Assert methods III

• assertNull(Object object)
assertNull(String message, Object object)
– Asserts that the object is null

• assertNotNull(Object object)
assertNotNull(String message, Object object)
– Asserts that the object is null

• fail()
fail(String message)
– Causes the test to fail and throw an

AssertionFailedError
– Useful as a result of a complex test, when the other

assert methods aren’t quite what you want

eXtreme programming ­ principles & practices

The assert statement

• Earlier versions of JUnit had an assert method
instead of an assertTrue method
– The name had to be changed when Java 1.4

introduced the assert statement

eXtreme programming ­ principles & practices

The assert statement

• There are two forms of the assert statement:
 assert boolean_condition;
 assert boolean_condition: error_message;
 Both forms throw an AssertionFailedError if the

boolean_condition is false
 The second form, with an explicit error message, is

seldom necessary

• When to use an assert statement:
 Use it to document a condition that you “know” to be

true
 Use assert false; in code that you “know” cannot be

reached (such as a default case in a switch statement)
 Do not use assert to check whether parameters have

legal values, or other places where throwing an
Exception is more appropriate

eXtreme programming ­ principles & practices

Viewing test results

If you run a single test, and it is successful, you
just get a message in the status line

Failed
tests

Unexpected errors and
exceptions

eXtreme programming ­ principles & practices

Problems with unit testing

• JUnit is designed to call methods and compare
the results they return against expected
results
– This works great for methods that just return results,

but many methods have side effects
• To test methods that do output, you have to capture

the output
– It’s possible to capture output, but it’s an unpleasant

coding chore
• To test methods that change the state of the object,

you have to have code that checks the state
– It’s a good idea in any case to write self-tests for object

validity

– It isn’t easy to see how to unit test GUI code
• Private methods cannot be tested

eXtreme programming ­ principles & practices

“Functional” Style
• I think heavy use of JUnit encourages a

“functional” style, where most methods are
called to compute a value, rather than to have
side effects
– This can actually be a good thing
– Methods that just return results, without side effects

(such as printing), are simpler, more general, and
easier to reuse

eXtreme programming ­ principles & practices

First steps toward solutions

• Rather than always printing on System.out, you can do
your printing on an arbitrary PrintStream
– The PrintStream can be passed into methods as a parameter

– Alternatively, you can redefine System.out to use a different
PrintStream with System.setOut(PrintStream)

• You can “automate” GUI use by “faking” events
– Here’s a starter method for creating your own events:

• public void fakeAction(Component c) {
 getToolkit().getSystemEventQueue().postEvent(
 new ActionEvent(c, ActionEvent.ACTION_PERFORMED, ""));
 }

– You can explore the Java API to discover how to create other
kinds of events

Eclipse e Junit

Come usare junit in Eclipse
● Scrivi la tua classe al solito
● Seleziona la classe per cui vuoi creare i casi di test,

tasto destro -> new -> JUnit Test Case
● Si apre un dialogo (seleziona tearDown, setUp e

main se vuoi avere questi metodi - non è necessario
in genere per piccoli esercizi)

● fai next -> seleziona il metodo per cui vuoi creare i
casi di test

● Riempi il metodo (con eclipse devi fare tu).

•Esempio
● Ad esempio se hai un metodo foo della classe Es1

che prende un array di Stringhe, avrai un metodo
testFoo in cui devi testare foo.

● Potresti scrivere istruzioni di questo genere:
 public void testFoo() {

 String[] b = new String[0];

 expectedReturn = null;

 actualReturn = Es1.foo(b);

 assertEquals("return value", expectedReturn, actualReturn);

 String[] c = {"cane", "grattacielo", "blu"}; ;

 expectedReturn = "blu";

 actualReturn = Es1.foo(c);

 assertEquals("return value", expectedReturn, actualReturn);

 }
●

● usa le istruzioni assertEquals e così via di Junit (vedi i lucidi)

•Esecuzione
● Per eseguire i test fai
● tasto destro sulla classe -> run As -> Junit Test
erfaccia per eseguire i casi di test)

classe Es1

public class Es1 {

 /** dato un array di stringhe, mi restituisce
 * la più corta null se l'array è vuoto
 */
 public static String piuCorta(String[] strs) {
 if (strs == null) {
 return null;
 }
 if (strs.length == 0) {
 return null;
 }
 // vettore non vuoto e non nullo !!!
 String cortissima = strs[0];
 for (int i = 0; i< strs.length; i++){
 if (strs[i].length()< cortissima.length())

 cortissima = strs[i];
 }
 return cortissima;
 }

}

Es1Test

public class Es1Test extends TestCase {
 protected void setUp() throws Exception {
 super.setUp();
 }
 protected void tearDown() throws Exception {
 super.tearDown();
 }
 public void testPiuCorta() {
 //
 // testo con array vuoto
 String[] strs = new String[0]; String actualReturn = Es1.piuCorta(strs);
 assertEquals("array vuoto", null, actualReturn);
 //
 // test con array null
 assertEquals("array null", null, null);
 // test con qualche array
 String[] caso1 = {"oggi", "ciao", "blu"};
 assertEquals("caso1", "blu", Es1.piuCorta(caso1));
 }
}

Esercizi

 Scrivere un metodo che prende un array di stringhe e
restituisci quella maggiore (in ordine alfabetico) o null se
l’array è vuoto o nullUn metodo che restituisce un array
di stringhe uguale a quello passato ma ordinato

Nota: per confrontare due stringhe s1 e s2
s1 > s2 ? =>

s1.compareToIgnoreCase(s2) > 0

Per confrontare due array a1 e a2 usa Arrays.equals:
assertTrue(java.util.Arrays.equals(a1,a2)); ...

