Control in Sequential Languages
Exceptions

T T R T T I T e S 0 R T T I T e P o R T T e I T P s R T T eI, T T

Angelo Gargantini

Topics cap 8

T TR P e T T I TR P S T T e U P o e PR o e T TR e M o P e P T e I Tl P 1

L] Structured Programming
* Go to considered harmful

LI Exceptions
* “structured” jumps that may return a value
* dynamic scoping of exception handler

L1 Continuali
* Function repr
 Generalized form

1 Control of evalug# (force and delay)

Fortran Control Structure

T TR P e T T I TR P S T T e U P o e PR o e T TR e M o P e P T e I Tl P 1

10 IF (X .GT. 0.000001) GO TO 20
11 X =-X
IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30
X =X-Y-Y
30 X = X+Y

50 CONTINUE
X=A
Y =B-A
GOTO11

Similar structure may occur in assembly code

Historical Debate

T TR o P e T L T o e P A T T e O T o e P e T e P M o P e T T e T e P 0 P

1 Dijkstra, Go To Statement Considered Harmful
 |etter to Editor, C ACM, March 1968

I Knuth, Structured Prog. with go to Statements
* You can use goto, but do so in structured way ...

[1 Continued discussion

* Welch, “GOTO (Considered Harmful)", n is Odd”

] General questions
* Do syntactic rules force good programming style?
* Can they help?

Advance in Computer Science

o T T P T e P e T e T e o P e e T T T T T o P) e T T e i T e P

| Standard constructs that structure jumps
if ...then ... else ... end
while ... do ... end
for...{...}
case ...

[Modern style
* Group code in logical blocks

* Avoid explicit jumps except for function return
* Cannot jump into middle of block or function body

Exception Concepts

Y B BB e P T P o P 0 A P T T U T e P

_I An exception is an
unusual/unexpected/erroneous event in the
program’s execution.

] An exception is “raised” when the event occurs.

1 An exception is “thrown” when it is raised
explicitly.

L] An exception handler is a code segment that is

executed when the corresponding exception is
raised.

Exception Ha

e WALl

ndler

TR L I RS TR T

L] Example (in Ada):
loop
ABLOCK:
begin
PUT_LINE (“Enter a number”);
GET (NUMB);
exit;
exception
when DATA_ERROR =>
PUT_LINE (“Not number - try again”);
end ABLOCK;
end loop;

U T R T TR T T 0 R T TR T T P S R

Exceptlon Handler in Java /C++

AT T L T T T T T T o T 0 R T Tt S T S G

[Example (in Java):
try {

} catch (Exception e){

- -—

Continuation

[1 Where to continue execution after the exception
handler?

The statement that raised the exception?

After the statement that raised the exception?
After the current iteration of a block? (Ada loop)
An explicit location?

At the end of the subprogram in which the exception was raised?
(Ada)

After the exception handler? (Java/C++)
Nowhere - terminate the application? (unhandled exceptions)

Handler Selection

T TR P e T T I TR P S T T e U P o e PR o e T TR e M o P e P T e I Tl P 1

1 Exceptions can be specified by:
* Special exception type (Ada)
* Ordinary data type (C++)
* Object type with specified superclass (Java)

LI Handler can be selected according to:
* First match (Java/C++)
* Best (most specific) match

First match

T TR o P e T L T o e P A T T e O T o e P e T e P M o P e T T e T e P 0 P

try {
// can throw exceptions
} catch (Derived &d) {
// Do something
} catch (Base &d) {
// Do something else
} catch (...) {
// Catch everything else

}

[]

[]

Control jumps to first matching
catch block

Order matters if multiple possible
matches

* Especially with inheritance-related
exception classes

* Put more specific catch blocks
before more general ones

* Put catch blocks for more derived
exception classes before catch
blocks for their respective base
classes

catch(...)
e catches any type

Exceptlon Spec:lflcatlons C++

G, LSt T T T T "I TR T T R

// can throw anything
vold Foo::bar();

]

Make promises to the caller

Allow stronger type checking enforced
by the compiler

[1 By default, a function can throw
// promises not to throw anything it wants

void Foo::bar() throw(); [] A throw clause in the signature
* Limits what a function can throw
e A promise to the calling function

void Foo::bar() throw(int): * Promises nothing will be thrown
[J Can list multiple types

« Comma separated

]

// only char or int
void Foo::bar() throw(char,int);

Exception Propagation

[11f an exception is not handled by the
subprogram in which it is generated, control is
returned to the caller and the exception is
reraised.

1 If the main program has no handler, the
program terminates.

T TR R T T T T e T S 0 R T T I T e P o R T T e I T P o e T T eI T I T

(1 Some languages have default handlers for
some exceptions — Ada usually terminates the
program.

1 Generic handlers can be specified as a fallback
mechanism:

catch (Exception e) in Java
catch (..) in C++
othersin Ada

finally

L T P e T e M o P e T e I Tl o P 0 A P T e U T e P

[Java has a special exception handler clause to be
executed whether or not an exception occurred, and
before control passes beyond the handler. Example:

try {

} catch (Exception e) {

} finally {

}

Summary

T TR P e T T I TR P S T T e U P o e PR o e T TR e M o P e P T e I Tl P 1

L] Structured Programming
* Go to considered harmful

LI Exceptions
* “structured” jumps that may return a value
* dynamic scoping of exception handler

