

Control in Sequential Languages
Exceptions

Angelo Gargantini

Topics cap 8

◆ Structured Programming
• Go to considered harmful

◆ Exceptions
• “ structured” jumps that may return a value
• dynamic scoping of exception handler

◆ Continuations
• Function representing the rest of the program
• Generalized form of tail recursion

◆ Control of evaluation order (force and delay)
• May not cover in lecture. Book section straightforward.

Fortran Control Structure

10 IF (X .GT. 0.000001) GO TO 20
11 X = -X
 IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30
 X = X-Y-Y
30 X = X+Y
 ...
50 CONTINUE
 X = A
 Y = B-A
 GO TO 11
 …

Similar structure may occur in assembly code

Historical Debate

◆ Dijkstra, Go To Statement Considered Harmful
• Letter to Editor, C ACM, March 1968

◆ Knuth, Structured Prog. with go to Statements
• You can use goto, but do so in structured way …

◆ Continued discussion
• Welch, “ GOTO (Considered Harmful)n, n is Odd”

◆ General questions
• Do syntactic rules force good programming style?
• Can they help?

Advance in Computer Science

◆ Standard constructs that structure jumps
if … then … else … end
while … do … end
for … { … }
case …

◆ Modern style
• Group code in logical blocks
• Avoid explicit jumps except for function return
• Cannot jump into middle of block or function body

Exception Concepts

◆ An exception is an
unusual/unexpected/erroneous event in the
program’ s execution.

◆ An exception is “ raised” when the event occurs.
◆ An exception is “ thrown” when it is raised

explicitly.
◆ An exception handler is a code segment that is

executed when the corresponding exception is
raised.

Exception Handler

◆ Example (in Ada):
loop
 ABLOCK:
 begin
 PUT_LINE (“ Enter a number”);
 GET (NUMB);
 exit;
 exception
 when DATA_ERROR =>
 PUT_LINE (“ Not number – try again”);
 end ABLOCK;
end loop;

Exception Handler in Java /C++

◆ Example (in Java):
try {
 …
} catch (Exception e){
 …
}

Continuation

◆ Where to continue execution after the exception
handler?
• The statement that raised the exception?
• After the statement that raised the exception?
• After the current iteration of a block? (Ada loop)
• An explicit location?
• At the end of the subprogram in which the exception was raised?

(Ada)
• After the exception handler? (Java/C++)
• Nowhere – terminate the application? (unhandled exceptions)

Handler Selection

◆ Exceptions can be specified by:
• Special exception type (Ada)
• Ordinary data type (C++)
• Object type with specified superclass (Java)

◆ Handler can be selected according to:
• First match (Java/C++)
• Best (most specific) match

First match

try {
 // can throw exceptions
} catch (Derived &d) {
 // Do something
} catch (Base &d) {
 // Do something else
} catch (...) {
 // Catch everything else
}

◆ Control jumps to first matching
catch block

◆ Order matters if multiple possible
matches
• Especially with inheritance-related

exception classes
• Put more specific catch blocks

before more general ones
• Put catch blocks for more derived

exception classes before catch
blocks for their respective base
classes

◆ catch(...)
• catches any type

Exception Specifications C++
// can throw anything
void Foo::bar();

// promises not to throw
void Foo::bar() throw();

// promises to only throw int
void Foo::bar() throw(int);

// only char or int
void Foo::bar() throw(char,int);

◆ Make promises to the caller
◆ Allow stronger type checking enforced

by the compiler
◆ By default, a function can throw

anything it wants
◆ A throw clause in the signature

• Limits what a function can throw
• A promise to the calling function

◆ A throw clause with no types
• Promises nothing will be thrown

◆ Can list multiple types
• Comma separated

Exception Propagation

◆ If an exception is not handled by the
subprogram in which it is generated, control is
returned to the caller and the exception is
reraised.

◆ If the main program has no handler, the
program terminates.

Default Handlers

◆ Some languages have default handlers for
some exceptions – Ada usually terminates the
program.

◆ Generic handlers can be specified as a fallback
mechanism:

◆catch (Exception e) in Java
◆catch (…) in C++
◆othersin Ada

finally

◆ Java has a special exception handler clause to be
executed whether or not an exception occurred, and
before control passes beyond the handler. Example:

try {
…
} catch (Exception e) {
…
} finally {
…
}

Summary

◆ Structured Programming
• Go to considered harmful

◆ Exceptions
• “ structured” jumps that may return a value
• dynamic scoping of exception handler

