
Introduzione

Brief History of Programming Languages

“A programming language is a tool that
has profound influence on our thinking

habits”
-- -- Edsger Dijkstra

Angelo Gargantini

Università di Bergamo

What is a computation?

Computation is an abstract and subtle
mental notion

with a concrete realization by a “machine”
causing electrons/photons to change
states/configurations

there are mathematical models of information &
computation

Effective transformation of inputs to
outputs

for the class of Turing computable functions
“effective procedures” => algorithms

symbolic (syntactic) rewriting based on well-defined
rules
(semantics) to compute (pragmatics) an answer
(information)

The invention of the algorithm

See Knuth’s Art of Computer
Programming,
Vol. 1 - Fundamental Algorithms

Euclid lived from ~325-265 BCE in
Egypt (Alexandria)
Euclid’s Elements & Euclid’s GCD
algorithm
Abu Ja'far Muhammad ibn Musa Al-
Khwarizmi father of Ja’far ,
Mohammad, son of Moses,
native of Khwarizm lived from
~780-850 ACE in Persia (Baghdad)
wrote “Kitab al-jabr wa’l-muqabala”
“rules of equating & restoring”
Etymology
Al-Khwarizm => algorism

Recent history (early 20th century)

Formal models of computation:
1900-1936

Church’s Thesis - all represent
same class of computations

Frege’s “concept script”
(predicate logic)
Church’s l-calculus
Kleene’s recursive functions
Turing’s abstract computing
machine
Curry’s combinatory logic
Post’s production system

Turing machine

Principal notations for describing
computations
TM: alphabet of tape symbols, r/w
tape, set of states,
state transition functions,
imperative control mechanism
T = (Q, S, I, q0, F) =
({q0,q1,q2,q3, q4},{0,1,-},q0,
{q4})
not programmer friendly!
ß l-calculus: l-terms, abstractions,
and reduction rules
ß expression evaluation by
parameter substitution &
reduction
ß (lx.x+1) 2 -> 2+1 -> 3
ß lacks many practical features
for programming a real computer
ß but Lisp, Scheme, Haskell, and
ML make it a practical “calculus”

Logic, Turing Machines & Lambda
Calculus

Church’s thesis tells us that all these formalisms
describe the same class of mathematical objects

i.e., the class of computable functions
choose the formalism best suited to the problem

Turing machines => imperative programming
focus on explicit state transitions and assignment
lambda-calculus => functional programming
pure expression evaluation and no assignment
predicate logic => logic programming
Horn clause resolution

What is a programming language?

A formal notation for specifying an infinite number of
computations

always requires an unambiguous syntax for the language
specified by a finite context-free grammar
should have a well-defined compositional semantics for each
syntactic construct in the language

axiomatic vs denotational vs operational vs ad hoc
often requires a practical implementation: pragmatics

general purpose language versus a domain-specific language
implementation on a real machine versus a virtual machine

efficiency vs portability
translation vs compilation vs interpretation

C++ was originally translated to C by Stroustrup’s Cfront translator
GNU g++ was the first native-code C++ compiler (by Michael
Tiemann)
Java originally used a byte-code interpreter, but then just-in-time
(JIT) compilers appeared, and now native code compilers are
commonly used for greater run-time efficiency
Lisp, Scheme, and most other functional languages are interpreted
by a virtual machine, but code is often pre-compiled to an internal
executable form for efficient execution by the virtual machine

Programming paradigms

Procedural/Imperative-style programming
FORTRAN, Algol, Pascal, C, …

Functional/Applicative-style programming
LISP, Scheme, ML, Haskell, …

Declarative/Logic programming
Prolog, …

Object-oriented programming
C++, C#, Java, …

Hybrids
concurrent, parallel, dataflow, intensional,
domainspecific,
…
scripting & extension languages

Key language milestones

Assembly languages
invented by machine designers in the early 1950s
shift from binary machine code to mnemonics
first occurrence of reusable macros & subroutines

FORTRAN - FORmula TRANslation
designed by John Backus at IBM in the mid-1950s
first high-level “algebraic” language with a compiler

LISP - LISt Processor
designed by John McCarthy in 1958
first language to be based on the theory of
recursive functions
influenced by Church’s l-calculus notation
major influence on all subsequent functional languages
as well as on Smalltalk

FORTRAN

John Backus, b. 1924
1977 Turing Award
On FORTRAN: “We did not know
what we wanted and how to do it. It
just sort of grew. The first struggle
was over what the language would
look like. Then how to parse
expressions - it was a big problem
and what we did looks astonishingly
clumsy now.... “

Defined BNF: “The syntax and
semantics of the proposed
international algebraic language
of the Zurich ACM GRAMM
conference.” ICIP Paris, June
1959.

influenced by Chomsky’s work
on context-free grammars

<letter> ::= a | b | c | d | e | f | g | h | i | j |
k | l | m | n | o | p | q | r | s |
t | u | v | w | x | y | z | A | B |
C | D | E | F | G | H | I | J | K |
L | M | N | O | P | Q | R | S |
T | U | V | W | X | Y | Z

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
9

<identifier> ::= <letter> |
<identifier> <letter> |
<identifier> <digit>

LISP

John McCarthy, b. 1927
1971 Turing Award
“In the course of its
development the LISP
system went through
several stages
of simplification and
eventually came to be
based on a scheme for
representing the partial
recursive functions of a
certain class of symbolic
expressions.”

Recursive Functions of
Symbolic Expressions
and their Computation
by Machine, Part I,
CACM, April 1960.

The roots of modern languages

Algol 60 - International Algorithmic Language
designed by IFIP Working Group 2.1 in 1958-1960
earlier versions: IAL, Algol 58
John Backus, Peter Naur, John McCarthy, Alan Perlis & others
formally specified syntax using Backus-Naur Form (BNF)
significant influence on all of today’s modern languages
introduced explicit variable type declarations, block structure
(begin-end), nested lexical scopes & recursive procedures

Pascal, Modula, Ada, C, C++, & Java are direct descendants
of Algol
Scheme adopted lexical scoping from Algol
Simula 67 - first object-oriented language

designed by Ole-Johan Dahl and Kristen Nygaard
influenced all subsequent OO programming languages
objects & classes
inheritance (subtyping) & virtual methods (subtype
polymorphism)

Simula

Ole-Johan Dahl, 1931-2002 Kristen Nygaard, 1926-
2002
joint 2001 Turing Award joint 2002 von Neumann
Medal
SIMULA I (1962-65) and Simula 67 (1967) are the
two first object-oriented languages.

Simula 67 introduced most of the key concepts of object-
oriented
programming: both objects and classes, subclasses
(usually
referred to as inheritance) and virtual procedures,
combined with
safe referencing and mechanisms for bringing into a
program
collections of program structures described under a
common class heading (prefixed blocks).

Other important languages

Algol-like
Jovial, Euler, Pascal, Algol-68, Forsythe, Clu, Ada

Functional
ISWIM, FP, SASL, Miranda, Haskell
LCF, ML, SML, Caml, OCaml
Scheme, Common LISP

Object-Oriented
Smalltalk, Objective-C, C++, Eiffel, Modula-3, Self, C#,
CLOS

Logic programming
Prolog, Gödel, LDL, automated theorem provers (ACL2)

Research-oriented
Dylan, ABCL/1, ACT, and literally hundreds more …

Ada

Primarily used by the US Dept of Defense
designed by a French language design team
as
part of an open competition
Named after Ada Byron (Lady Lovelace),
1815-1851

At a young age, Ada learned of Charles
Babbage's ideas for a new calculating
engine, the Analytical Engine. Babbage
conjectured: what if a calculating engine
could not only foresee but could act on
that foresight. Ada was impressed by the
universality of this idea. She suggested
the idea of writing a plan for how this new
calculating engine could be used to
calculate Bernoulli numbers. This plan, is
now regarded as the first "computer
program.”
see the book: Ada, The Enchantress of
Numbers, by Betty Alexandra Toole

Application specific languages

Commercial data processing & database querying
Cobol, SQL, 4GLs, XQuery

Systems programming
PL/I, PL/M, BCPL, BLISS, Modula, Modula-2, Oberon

Specialized applications
BASIC, APL, Forth, Icon, Logo, SNOBOL4, GPSS, VisualBasic

Concurrent, Parallel & Distributed
Concurrent Pascal, Concurrent C, C*, SR, Occam, Erlang, Obliq

Command shells, scripting & “web” languages
sh, csh, tcsh, ksh, zsh, bash, …
Perl, Php, Python, Rexx, Ruby, Tcl, AppleScript, VBScript, etc.
HTML/XML are markup languages not programming languages
but they often imbed executable scripts like Active Server Pages
(ASPs) & Java Server Pages (JSPs)

Programming tool “mini-languages”
awk, make, lex, yacc, autoconf, …

Cobol

Common Business Oriented Language
invented in the 1950’s
primarily used for business data processing applications
billions spent to fix Y2K issues in old Cobol programs

Admiral Grace Murray Hopper, 1906-1992
PhD Mathematics, Yale, 1934
studied under the famous algebraist Oystein Ore
joined the Navy in 1943 and worked at Harvard with Howard
Aiken on the Mark I and Mark II computers

called the “mother of Cobol” for her contributions
to the standardization of the language
credited with inventing an early compiler (1952)
She did this, she said, because she was lazy and hoped that "the
programmer may return to being a mathematician.”
Conference on Women in Computing is regularly
held in her honor “ACM Grace Murray Hopper Award”
see http://www.acm.org/awards for winners

From K&R C to ISO/ANSI C

Brian Kernighan
also the ‘K’ in AWK

Dennis Ritchie
1983 Turing Award
winner (with Ken
Thompson)

From K&R C to “C with Classes” to
C++

Bjarne Stroustrup
Ph.D Univ. of Cambridge
used Simula in Ph.D.
research and he knew
about BCPL
then he went to Bell Labs
& created “C with classes”
in 1979
‘++’ in C++ due to A.
Koenig first “Cfront”
translator from
C++ to C around 1983
released to Universities in
1985-86

And then came Java…

James Gosling (and “Duke”)
Gosling Emacs
Oak => Java

Java is more influenced by C
(syntax) and Modula-3 (object
model) than by C++

Unlike C++
no operator overloading
no templates (but in Java 1.5)
no multiple inheritance

Like Modula-3
explicit interfaces
single class inheritance
exception handling
built-in threading model
references & automatic garbage
collection (no pointers!)

From BASIC to C# to .NET

The “un-Java” for Windows
an aside: the politics of language
adoption
use of a programming language to
win the mindshare of the
software developer community to
gain or maintain commercial
market share
“open” language design/evolution
process vs proprietary ownership
of a language
this is not a new thing: IBM tried
to do this with PL/I in the 60s,
but free implementations
appeared: e.g., PL/C - Cornell PL/I
C# has an interesting run-time
environment

.NET CLR - common language
runtime
for Visual Basic, C++, C#, and
future Microsoft languages

Why so many languages?

Language evolution versus
revolution

Are “new” languages really new?
first we must ask: “in what way is a language new”?
significantly improves upon 1st generation languages
e.g., better than Algol, Lisp and Simula in some key
ways

programmer productivity, program correctness,
efficiency, reusability, extensibility,
understandability, etc.
evolutionary vs revolutionary progress since 1960
Object-oriented? Functional? Logical?

Java is not really new - it “borrows” practically every
feature from existing languages
see http://java.sun.com/people/jag/green/index.html

The Von Neumann Bottleneck

John von Neumann, 1903-1957
invented the concept of the stored program
computer
based on the mathematical idea of Turing for a
universal computing machine

John Backus coined the term “von
Neumann bottleneck” in his Turing lecture
where he proposed a purely functional
approach to
programming

IEEE John von Neumann Medal is
awarded annually for outstanding
achievements in computer-related
science and technology.

Language design

What are good design criteria for a
language?
What do the experts say?

On the Design of Programming Languages,
Niklaus Wirth
Hints on Programming Language Design, C.A.R.
Hoare
Why Pascal is Not My Favorite Language, Brian
Kernighan

Lisp - Notes on its Past and Future, John
McCarthy

Growing a Language, Guy Steele

What do all languages have in
common?

Lexical structure & analysis
tokens: keywords, operators, symbols, variables
ignore white space (i.e., _,\r,\n,\t) & comments
regular expressions & finite automata
lexical scanner generators, e.g., lex/flex
Syntactic structure & analysis
context-free grammars & parsing of syntactic phrases
LL(k) and LR(k) grammars
top-down vs bottom-up parser generators (e.g. ANTLR vs
Yacc)

Pragmatic implementation issues
lexical scopes, scope rules, block structure, local
variables
procedures, functions, parameter passing, iteration,
recursion
built-in types, type checking, strings, arrays, structures,
etc.

Semantics; what do programs mean and are they
correct

Case Study: design and
development of C

Algol 68 & PL/I to BCPL -> B -> New B -> C
The Development of the C Language, Dennis Ritchie

A History of Algol 68, Charles Lindsey
PL/I as a Tool for Systems Programming, Fernando
Corbató
The BCPL Reference Manual, Martin Richards
User’s Reference to B, Ken Thompson
C Reference Manual, Dennis Ritchie

Desiderata for Programming
Languages

Expressiveness - Turing-completeness
But also a stronger kind of expressiveness - how easy it is to
program simple concepts

Efficiency
Recursion in functional languages is expressive but sometimes
inefficient

Simplicity - as few basic concepts as possible
Sometimes a trade-off with convenience (three kinds of loops in
Pascal)

Uniformity and consistency of concepts
Why does for in Pascal require a single statement while repeat
allows any number of statements?

Abstraction - language should allow to factor out recurring
patterns
Clarity to humans

 the distinction = vs. == in C a bit confusing
Information hiding and modularity
Safety - possibility to detect errors at compile time

Awk, REXX and SNOBOL type conversions are error prone

Informazioni sui corsi (Informatica 3
e progetto di informatica 3)

Obiettivo di Informatica 3
imparare alcuni nuovi pradigmi di programmazione e alcuni problemi

piu' teorici per sapere programmare meglio e risolvere i problemi
tramite programmi in modo piu‘ efficace e rigoroso.

Computabilita': cenni macchina di Turing e problema dell'HALT
Sintassi dei linguaggi
Semantica assiomatica e correttezza di programmi
Type systems: imparare un po' sui tipi, overloading,
polimorfismo,
Object oriented: familiarizzare con i concetti base dell'OO

C++:
OO Design Pattern
Java

Seguiremo l'ordine inverso

Testo

Concepts in Programming Languages
(Cambridge Univ Press, 2002) John C.
Mitchell
consigliato l’acquisto
(disponibile in pdf)
leggetelo !!!

Programming Language Concepts, Ghezzi e
Jazayeri, Wiley
Programming Languages, Sebesta, Addison
Wesley
Advances in Programming languages, Finkel,
Addison Wesley – si può scaricare

Progetto di Informatica 3

Obiettivo: imparare a progettare/implementare un
programma largo in Java
usare Java in modo approfondito

classi astratte, interfacce, metodi statici, ...

usare le cose nuove di Java
generics, enumeration

avanzate:
uso di librerie esterne
Junit
coverage con emma

In laboratorio con me e Mario Verdicchio

Altre info

ricevimento
lunedì dopo la lezione di info 2 e prima di info3

laboratori
per fare esercizi

sito web
Dal sito di unibg.it

Esame: da decidere per Info3
per progetto: il progetto + orale

