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A B S T R A C T

Health monitoring technology in everyday situations is expected to improve quality of life and support aging
populations. Mental fatigue among health indicators of individuals has become important due to its association
with cognitive performance and health outcomes, especially in older adults. Previous models using eye-tracking
measures allow inference of fatigue during cognitive tasks, such as driving, but they require us to engage in
specific cognitive tasks. In addition, previous models were mainly tested by user groups that did not include
older adults, although age-related changes in eye-tracking measures have been reported especially in older
adults. Here, we propose a model to detect mental fatigue of younger and older adults in natural viewing
situations. Our model includes two unique aspects: (i) novel feature sets to better capture fatigue in natural-
viewing situations and (ii) an automated feature selection method to select a feature subset enabling the model
to be robust to the target's age. To test our model, we collected eye-tracking data from younger and older adults
as they watched video clips before and after performing cognitive tasks. Our model improved detection accuracy
by up to 13.9% compared with a model based on the previous studies, achieving 91.0% accuracy (chance 50%).

1. Introduction

Health monitoring technology in a smart environment such as
adaptive workplaces and smart houses has been increasingly recognized
as a way of improving health outcomes as well as cognitive and beha-
vioral performance [1]. Especially considering the growing demand for
health monitoring for older adults due to a rapidly aging population,
monitoring technology is expected to support aging in place and help
enable individuals to manage their own health, with the dual aim of
increasing quality of life and reducing healthcare costs [2]. Previous
studies on health monitoring have suggested behavioral features in
speech, motion, and gaze as a means of inferring an individual's state,
such as physical conditions [3], stress [4,5] and mental workload [6],
measuring behavioral characteristics, such as sleep quality [7] and so-
cial activities [8], and screening for neurodegenerative diseases, such as
dementia [9–12], depression [13], and Parkinson's disease [14]. These
monitoring technologies can keep track of daily changes in health and
detect early signs of disease. Being capable of inferring unutilized in-
formation related to an individual's health holds promise for providing
better health care and enhancing well-being.

One aspect of an individual's daily health status that has yet to be
utilized is mental fatigue, which refers to the feeling people might ex-
perience during or after cognitive activities [15]. Mental fatigue is

becoming an increasingly serious health and social problem, and it
comes at a huge public health cost [16]. In the workplace, mental fa-
tigue is known to affect cognitive and behavioral performance [17]. In
fact, mental fatigue has been suggested as one of the most frequent
causes of accidents and errors in the workplace [18]. Recent analyses
have reported that the cost of fatigue-related accidents and errors in the
US may reach as a high as $31.1 billion [19,20]. From the perspective
of an individual's health, mental fatigue is a warning sign of harmful
accumulations of stress that can have a detrimental effect on one's
health [21]. Furthermore, in the context of health of the elderly, it has
garnered increasing attention as recent longitudinal studies have shown
an association of mental fatigue with cognitive decline and daily
functional deficits in later life [22,23].

Previous studies on monitoring mental fatigue by using unobtrusive
methods have primarily focused on using eye-tracking measures during
cognitive tasks such as driving [18,24,25]. Some studies investigated
how eye-tracking measures change with the duration of the cognitive
task to identify sensitive measures indicating an increase in mental
fatigue [26–28]. Others built models by combining these eye-tracking
measures and succeeded in detecting mental fatigue during a specific
cognitive task [29,30]. However, no study has yet investigated the as-
sociation between mental fatigue from eye-tracking measures in nat-
ural-viewing situations when the individual is not performing cognitive
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tasks. A model capable of detecting mental fatigue from eye-tracking
data in natural-viewing situations would extend the scope of applica-
tion to monitoring fatigue in various everyday situations. Moreover, it
could be used to infer fatigue induced by not only specific cognitive
visual tasks, but also various factors such as cognitive auditory tasks,
multiple cognitive tasks, or poor health [18].

In addition, recent studies have pointed out the need to test whether
previous models for inferring mental fatigue using eye-tracking mea-
sures can be applied to aging populations because age-related changes
in eye-tracking measures have been reported [29,31,32]. As mentioned
above, mental fatigue has become important for monitoring the health
of older adults [22,23]; thus, a model that enables us to monitor mental
fatigue in a wider age group including older adults would be very
useful.

In this paper, we propose a novel model to detect mental fatigue of
younger and older adults in natural viewing situations. Our model's
uniqueness lies in (i) novel feature sets to better capture mental fatigue
in natural viewing situations and (ii) an automated feature selection
method to select a feature subset enabling the model to be robust to the
target's age. We collected eye-tracking data from 18 participants while
they watched video clips and tested whether our model could detect
mental fatigue induced by auditory cognitive tasks. With eye-tracking
data of individuals watching only 30 s worth of video, our model could
determine whether that person was fatigued or not with 91.0% accu-
racy in ten-fold cross-validation (chance 50%). To make a comparison
with a model based on the existing work, we also built a model with
only feature sets used in a previous study, where the detection accuracy
was 77.1%. We also collected eye-tracking data from 11 additional
participants while they watched video clips without engaging in cog-
nitive tasks, and confirmed that our model captured changes resulting
from mental fatigue induced by the cognitive tasks, not just sequence
effects of repetitive video watching. A preliminary version of this paper
appeared as [33].

Our contributions are as follows:

• We developed a model to detect mental fatigue of younger and older
adults in natural viewing situations.

• We collected eye-tracking data from younger and older adults who
watched video clips before and after performing cognitive tasks.

• Through a comparison with a model based on previous studies, we
demonstrated that our model could robustly detect mental fatigue
induced by cognitive tasks, despite there being age-related changes
in the eye-tracking measures.

2. Related work

In this section, to determine the sort of eye-tracking measures that
we should focus on, we describe the existing fatigue detection tech-
nologies and measures correlated with mental fatigue. We also explain
recent studies on the association with eye-tracking data in natural
viewing situations and an individual's health state.

2.1. Fatigue detection technology

Many attempts at developing fatigue detection technology have
focused on either determining fatigue levels by using specific test tasks,
i.e., fitness-for-duty tests [34,29], or monitoring correlates of fatigue
during cognitive tasks [30,25]. The former sort of approach uses neu-
robehavioral tasks for assessing executive functions such as vigilance or
hand-eye coordination; their test tasks typically take up to 10min and
have no practice/learning effects [29]. For example, these test tasks are
performed before and/or in the middle of driving in order to evaluate
fatigue [29]. Although this enables one to estimate an individual's
mental fatigue regardless of what kind of cause induced the mental
fatigue, it requires the person to perform the test task every time the
mental fatigue evaluation is to be made. On the other hand, the latter

sort of approach aims to infer mental fatigue during cognitive tasks
without any additional test tasks. Most of the studies on this approach
built models for inferring mental fatigue by using task performance
and/or psychophysiological measures such as eye-tracking measures
that are known to be correlated with fatigue during the targeted cog-
nitive task [25,19]. These studies have achieved high detection accu-
racy, and several commercial products based on them are already
available [29,30]. However, because their systems target fatigue during
specific cognitive tasks, we need to examine the question of whether
they can be used to estimate mental fatigue during other cognitive
tasks.

Both approaches typically use task performance and/or psycho-
physiological measures as fatigue-correlated measures. The measures
related to task performance are relatively easy to obtain and interpret.
However, their validity remains controversial because recent studies
suggest that mental fatigue does not always impair task performance;
specifically, they reported that people can keep performing prolonged
tasks even when multiple other measures including eye-tracking mea-
sures show accumulating mental fatigue [35]. In addition, if one uses
task performance as criteria for inferring mental fatigue, we need to
determine how to calculate the performance measures and build a
model for each cognitive task. Thus, recent studies have aimed at
identifying psychophysiological measures correlated with mental fa-
tigue and developing models by combining them in various ways
[25,30].

2.2. Fatigue correlated psychophysiological measures

The most advanced psychophysiological measures are electro-
encephalography (EEG) and eye-tracking measures. EEG measures that
capture changes in brain waves have been shown to be valid biomarkers
of mental fatigue [29,36]. Specifically, multiple studies have shown
that as an individual grows fatigued, slow wave activity such as theta
and alpha activity increases over the entire cortex [29,36]. Although
EEG measures have high accuracy for offline fatigue monitoring, they
require the time-consuming application of obtrusive EEG sensors to the
head of the individual, and thus, it would be difficult to use them for
health monitoring applications in everyday situations, at least for now.
On the other hand, eye-tracking measures have an advantage in their
unobtrusiveness, and they were used by most of the previous studies
and applications aiming to monitor mental fatigue [29]. The eye-
tracking measures for inferring mental fatigue typically include indices
associated with pupil measures, blinking, and oculomotor-based me-
trics [28,29,18].

The relationship between pupil measures and mental fatigue has
been studied since the 1930s [37], and multiple fatigue correlated
measures have been reported, for example, pupil diameter, and con-
striction velocity and amplitude [29,26,18]. Blinking is one of the vi-
sual behaviors that can be easily observed when an individual is fati-
gued. Several studies have shown that increased fatigue results in
longer and more frequent blinking [27]. Other studies reported other
measures related to increased mental fatigue, such as blink velocity and
interval [25,24]. Schleicher and colleagues experimented in a simulated
traffic situation and found that blinking was the best indicator of fa-
tigue compared with other eye-tracking measures including oculo-
motor-based metrics such as saccadic parameters and fixation durations
[24]. Among the various oculomotor-based metrics, saccadic metrics
have received the most attention as a means of inferring mental fatigue
[28,38]. Multiple studies have investigated the validity and sensitivity
of saccadic metrics, including saccade velocity, duration, and ampli-
tude, as indexes of an individual's fatigue [25,28]. Di Stasi and col-
leagues demonstrated that saccadic eye movement parameters, parti-
cularly the peak velocity, are sensitive indicators of mental fatigue in
experiments using different tasks, including simulated air traffic con-
trol, simulated driving, and simulated laparoscopic surgery [25,28]. In
addition to the saccadic metrics, recent advances in eye tracking
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technologies have enabled us to record eye positions at high speed and
to extract from data drifts and microsaccades (small-magnitude sac-
cades produced during attempted fixation) [39,19]. These studies have
shown that microsaccade velocities decrease as fatigue increases in a
range of tasks in different settings [39,19].

The pupil measures and blink data can be obtained from images by
using computer vision techniques [30]. Regarding oculomotor-based
metrics, while low-cost eye trackers are now becoming available, a
webcam-based tracking system has also been proposed [40]. This
webcam-based system enables eye-tracking data including oculomotor-
based metrics related to saccades and fixations to be collected even in a
crowdsourcing setting, and the data has a quality comparable to data
gathered by using low-cost eye-trackers in traditional lab settings [40].
From this perspective, oculomotor-based metrics related to saccades
and fixations could also be used to develop a model for inferring mental
fatigue in everyday situations. In contrast, metrics related to drifts and
microsaccades cannot be measured using low-cost eye trackers and
require specialized expensive hardware with high sampling rates such
as 1000 and 2000 Hz, making it difficult to use in a living environment.
Thus, for the time being, drift and microsaccade measurements are still
not applicable.

These eye-tracking measures have been experimentally tested
mainly for people below 50 years of age. In contrast, many studies have
reported age-related changes in eye-tracking measures including mea-
sures used for inferring mental fatigue in previous studies such as pupil
diameter and responses, eye movement patterns, and saccades
[29,32,41]. For example, large-scale studies on age-related changes in
saccade dynamics reported that saccadic parameters including latency
and velocity are relatively stable throughout the middle years up to age
50, but then change in later years [31]. However, no study has in-
vestigated the question of whether eye-tracking measures can be used
to infer mental fatigue in older adults [29]. To develop a model that is
robust to age-related changes in eye-tracking measures, we need to test
a model in individuals including older adults.

2.3. Eye-tracking measurements in natural viewing situations

The previous studies and applications for inferring mental fatigue
mainly focused on correlates of fatigue when a person engages a spe-
cific cognitive task, and no study has yet developed a model that allows
us to infer mental fatigue in natural-viewing situations when the target
is not performing cognitive tasks.

Instead, recent studies have attempted to screen for brain diseases
by using eye-tracking data in natural viewing situations [42,38,10,43].
Crabb and colleagues demonstrated that patients with neurodegenera-
tive eye disease can be separated from healthy controls by using eye-
tracking data collected while people freely watched TV-type films [38].

Similarly, Tseng and colleagues devised a three-class classification
model that could discriminate between children with attention deficit
hyperactivity disorder, fetal alcohol spectrum disorder, and controls in
natural viewing situations where participants simply watched video
clips (simulating the situation of watching a TV program) [42]. In these
studies, the eye tracking data were characterized by the distribution of
eye movements and a saliency model in addition to basic oculomotor-
based metrics such as saccade velocity and fixation duration.

The saliency model was originally proposed as a biologically in-
spired computational model related to human attention based on fea-
ture integration theory [44,45]. It has been widely used for analyzing
eye-tracking data collected in natural viewing conditions [46,47]. This
model attempts to explain how human eye movements are guided by
bottom-up attention—in other words, stimulus-driven or reflexive eye
movements [45]. The term bottom-up attention is used in contra-
distinction to top-down attention, which refers to the voluntary allo-
cation of attention [45,48]. The saliency model tries to quantify the
contribution of bottom-up attention to eye movement based on the
prediction performance of fixations calculated by using only visual
stimuli [46,47]. Although there has been no investigation on the as-
sociations between mental fatigue and saliency-based eye movement
features, it seems likely that reflexive eye movement guided by bottom-
up attention increases with mental fatigue. In fact, psychological stu-
dies have shown that fatigued participants had difficulty sustaining
attention and ignoring irrelevant information [15], supporting the hy-
pothesis that eye movement might be more affected by bottom-up at-
tention when an individual is fatigued.

3. Mental fatigue detection model

On the basis of the related work described in the previous section,
we decided to focus on six types of eye-tracking measures that would be
useful for inferring mental fatigue: feature sets related to pupil mea-
sures, blinking, oculomotor-based metrics, gaze allocation, eye move-
ment directions, and a saliency model. The first three feature sets were
used in previous studies on mental fatigue during cognitive tasks
[24,25,18]. The other three feature sets have been used for character-
izing eye movements in natural viewing situations as well as inferring
brain diseases [42,38,10], although they have not been used before for
detecting mental fatigue.

Furthermore, we investigated age-related changes in eye-tracking
measures that have been used for inferring mental fatigue in previous
studies. To build a model capable detecting mental fatigue of in-
dividuals including younger and older adults, we need to identify eye-
tracking features that enable the model to be robust to age-related
changes through a feature selection method.

Our model is summarized in Fig. 1. In this study we treated a binary

Fig. 1. Overview of our fatigue-detection
model. Our model first extracts six types of
feature sets from eye-tracking data collected
while participants watch video. Using a subset
of the features selected by a feature selection
method, a two-class classifier using support
vector machine (SVM) model estimates whe-
ther that person is fatigued or not.
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state of mental fatigue, and proposed a model to capable of inferring
mental fatigue. To build our model, we first extracted 181 quantitative
features, categorized into six feature sets that may change according to
an individual's state of mental fatigue. We next used a two-class clas-
sifier for inferring mental fatigue by using a subset of the features se-
lected by a feature selection method through recursive evaluation and
selection to avoid over-fitting.

For a two-class classification model for detecting mental fatigue, we
used support vector machine (SVM) models [49,50] with a radial basis
function kernel as follows: K(xi, xj)= exp(−γ||xi− xj||2). We set
γ= bSVM/nf, where nf is the number of features and bSVM is a hyper-
parameter. We used the algorithm for SVM implemented in MATLAB
(MathWorks Inc., Natick, MA) and LIBSVM toolbox [50].

To avoid overfitting of the model and identify features that enable
the model to be robust to age-related changes, we performed the feature
selection through recursive evaluation and selection. One of the well-
known algorithms for this is support vector machine recursive feature
elimination (SVM-RFE) in the wrapper approach [51]. SVM-RFE is a
powerful feature selection algorithm, and it has been used with great
success in pattern recognition applications. It uses criteria derived from
the coefficients in SVM models to assess features and iteratively dis-
cards the weakest features until all of them have been eliminated.
However, when the candidate feature set has highly correlated features,
the ranking criterion of SVM-RFE tends to be biased, which would have
a negative effect on the results. In fact, our feature set extracted from
eye tracking data contained highly correlated features such as features
related to saccade duration, amplitude, and velocity. We thus used an
improved SVM-RFE algorithm with a correlation bias reduction strategy
in the feature elimination procedure [52].

3.1. Feature extraction

The oculomotor-based features consisted of nine features: saccade
amplitude, saccade duration, saccade rate, inter-saccade interval
(mean, standard deviation, and coefficient of variance), saccadic mean
velocity (mean and median), and fixation duration. The previous stu-
dies showed that saccadic mean and peak velocity decreased with

increasing mental fatigue [25,28]. However, low-cost eye trackers do
not reliably detect saccadic peak velocity because of their relatively low
sampling rate. Accordingly, we used only saccadic mean velocity, so
that our model could be implemented using low-cost eye trackers such
as webcam-based tracking systems [40,53].

We calculated seven features related to blinking: blink duration,
blink rate, blink duration per minute (the total time of all durations),
and inter-blink interval (mean, standard deviation, and coefficient of
variance).

The pupil measures were subdivided into six features related to
pupil diameter, constriction velocity, and amplitude of each eye, and
nine features related to the coordination of the pupil diameters of both
eyes. Of these nine features, one was computed using Pearson's corre-
lation coefficient. The other eight features were extracted using the
phase locking value [54], which can identify transient synchrony over
shorter time scales than Pearson's correlations can. We used the mean
and maximum values of the phase locking values with four different
time windows (5, 10, 30, and 60 frames).

The fourth feature set was calculated from a time-series of gaze
allocation. We first converted gaze allocation values into radius and
angle (r, ϕ) values in a polar coordinate system situated at the center of
the display. We then defined time series of gaze allocations during all
periods as (r, ϕ)all and those only during fixation periods as (r, ϕ)fx. We
discretized each time series with k bins of uniform width. We set k=8
for rall and rfx, k=36 for ϕall, and k=12 for ϕfx. As features, we used
the probability of each bin and entropy estimated using these histo-
grams and also calculated the mean and median values of rall and rfx. In
total, we obtained seventy-two features from the gaze-allocation data.

The fifth feature set related to eye-movement directions was cal-
culated in a similar manner to the gaze allocation features. We dis-
cretized the time series of eye-movement directions θ during all periods
and during saccades periods into 12 and 36 bins of uniform width,
respectively. We then computed the probability of each bin and entropy
estimated using these histograms as features. In total, we obtained fifty
features.

The sixth and final set consisted of features extracted using a sal-
iency model (Fig. 2). In particular, we used the graph-based visual

Fig. 2. Workflow of how saliency-based fea-
tures are extracted. (A) The saliency model
first generates conspicuity maps in terms of six
different low-level features, and these maps
are linearly combined and normalized to form
a saliency map. The saliency map represents a
topographic map of conspicuity for every lo-
cation in each video frame, highlighting loca-
tions that may attract attention in a stimulus-
driven manner. (B) For each saccade endpoint,
a saliency map value is sampled. At the same
time, map values are randomly sampled from
the same saliency map. (C and D) Using these
values with all the saccades, histograms are
generated from saliency values of human and
random fixations and summarized using or-
dinal dominance analysis for calculating the
AUC score.
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saliency model proposed by Harel et al. [55], because it has been shown
to have high prediction power for fixations on several datasets and can
be applied to dynamic scenes (videos). This model first generates con-
spicuity maps in terms of six low-level features: intensity contrast, color
contrast, intensity variance, oriented edges, temporal flicker, and mo-
tion contrast. Next, conspicuity maps of the six different low-level
features are linearly combined and normalized to form a saliency map.
The saliency map represents a topographic map of conspicuity for every
location in each video frame, highlighting locations that may attract
attention in a stimulus-driven manner.

We then compute the prediction performance of the saliency map by
using the area under the curve (AUC) of the receiver operating char-
acteristic, as follows. First, we obtained a saliency map value at the
saccade endpoint when a participant started a saccade, and we ran-
domly sampled 100 map values from the same saliency map. These
values were normalized to values from 0 to 1 relative to the minimum
and maximum values in the saliency map. Using these values with all
the saccades, human fixations were considered to be the positive sets
and random ones the negative sets. The saliency map was then treated
as a binary classifier to separate the positive samples from the nega-
tives. By incrementing a threshold from 0 to 1, we plotted the true
positive (human hits) rate versus the false positive (random hits) rate
and obtained the ROC curve. Therefore, the AUC represents the pre-
dictive accuracy of the saliency model based on the endpoints of the
saccades of the participants. For example, an AUC of 0.5 indicates
chance level and 1.0 means perfect prediction.

We used the AUC score and the probability of low-/medium-/high
saliency map values at the saccade endpoints as saliency-based features.
The saliency-based features can be calculated using not only the sal-
iency map, but also each conspicuity map of the six low-level features.
Accordingly, we obtained 4× 7=28 saliency-based features in total.
For more details, we refer the reader to the original papers [42,55,46].

4. Experiments

We conducted two experiments. In the first experiment, we col-
lected eye-tracking data from younger and older adults in a situation in
which they watched video clips (simulating the situation of watching a
TV program) before and after performing auditory cognitive tasks. We
then investigated whether our model could detect mental fatigue from
the eye-tracking data. In the second experiment, we aimed to confirm
whether our model could capture the difference in eye-tracking data
resulting from increased mental fatigue induced by the cognitive tasks,
not simply from the sequence effects of repetitive video watching. To
this end, we collected eye-tracking data from other participants who did
not engage in the cognitive tasks. Specifically, they were asked to watch
the video clips in the same order as the first experiment, and rest be-
tween phases without engaging in cognitive tasks.

4.1. Participants

For the first experiment, we collected data from 20 participants
(eight females, 12 males; 24–76 years; mean ± SD age, 47.5 ± 20.5
years). Among the participants, nine (five females, four males) were
more than 50 years of age, and they were recruited from local senior
communities. For the second experiment, we collected data from 11
other participants (two females, nine males; 23–57 years; mean ± SD
age, 29.7 ± 9.8 years). Eye tracking data from two participants for the
first experiment (one female and male; the female was more than 50
years old) were excluded from our analysis because of problems cali-
brating the eye tracker. Thus, our sample size was N=18 and N=11
for the first and second experiments, respectively. All participants were
well-rested and in good health, as measured by self-reports, and they
had normal or corrected-to-normal vision. They were unaware of the
purpose of the experiments.

4.2. Experimental design and procedure

The experimental procedure for the first experiment is summarized
in Fig. 3. Participants of the first experiment performed a 17-minute
mental calculation task designed to induce mental fatigue two times.
They were asked to take questionnaires and watch video clips prior to
and following each mental calculation task (Fig. 3A). Prior to the ex-
periment, all participants were given oral instructions about the ex-
periments and allowed to practice the mental calculation task. Parti-
cipants of the second experiment followed the same procedure as the
first experiment with the exception that they rested instead of per-
forming the mental calculation task.

We used numerical rating scales to measure the current (“right now,
at this moment”) perceived intensity of feelings about mental and
physical fatigue, sleepiness, and motivation. The intensity was scaled
from zero to ten, with zero indicating an absence of those feelings and
ten indicating the strongest feeling ever experienced. Numerical rating
scales were used because they are considered superior for the assess-
ment of unidimensional subjective feelings compared with other
methods such as visual analogue scales [56].

The participants were asked to watch video clips approximately
5min in length during each phase of the experiment. Stimuli were
shown on a 20-inch computer monitor and presented at 30 Hz with a
resolution of 1600×1200 pixels. Participants were seated approxi-
mately 80 cm away from the monitor so that scenes subtended ap-
proximately 28°× 22° of the usable field-of-view. As in previous studies
[42], they were instructed to simply “watch and enjoy the videos.”

As an auditory cognitive task to induce mental fatigue, we used a
modified version of the paced auditory serial attention test (mPASAT)
[57] (Fig. 3B). The mPASAT requires several cognitive functions such as
working memory, attention, and arithmetic capabilities while imposing
a high cognitive workload. Several studies have reported that the
mPASAT induces mental fatigue in participants [57]. In this task,

Fig. 3. Experimental setup: (A) overall procedure, (B) mental calculation task called mPASAT, and (C) examples of scene-shuffled video clips.
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participants listened to a series of numbers ranging from one to nine.
They were asked to add the number they had just heard to the number
they had heard before and then to press a button whenever the sum of
the two consecutive numbers equaled ten. One phase consisted of five
three-minute on-periods and four 30-second off-periods for a total of
17 min. Each number was presented for 1.5 s; 120 numbers were thus
presented during each three-minute on-period. Participants were also
asked to visually focus on three numbers on the display, which ran-
domly changed every 0.5 s. These visual numbers were intended to
distract and interfere with the primary auditory task, thereby increasing
the complexity and attentional demands of the task in order to induce
further mental fatigue. To summarize: participants were instructed to
listen to a series of numbers presented via the speaker and perform the
serial addition task while simultaneously keeping their eyes open and
focusing on the numbers displayed on the screen.

4.3. Eye-tracking data acquisition and stimuli

The participants’ eye movements and pupil data were recorded
using a noninvasive infrared EMR ACTUS eye tracking device at a
sample rate of 60 Hz (nac Image Technology Inc.; spatial resolution for
eye movements and pupil diameter less than 0.5° and 0.1mm, respec-
tively). The eye tracker was calibrated using 9-point calibration at the
beginning of each recording phase.

To simulate the situation of watching a TV program, we used video
clips made in the same manner as previous studies that investigated
how brain diseases affect eye movements in natural viewing situations
[48,42] (Fig. 3C).

Each five-minute phase consisted of nine scene-shuffled videos
(SVs), approximately 30 s each. Between the SVs, there were five-
second off-periods for rest. The SVs were made by assembling randomly
extracted snippets from video clips. The lengths of the snippets were
determined so that they were within the range of typical television
programs [58,59]. For example, the 15- and 30-second TV commercials

typical in the United States have shots 1–2 s in length, and Hollywood
films feature shots that are on average 5 s in length [58,59]. In this
study, the lengths of the snippets were uniformly distributed between
two and 4 s, so each SV consisted of nine to eleven snippets with no
temporal gaps in between.

The original video clips were randomly taken from two datasets:
CRCNS-ORIG [60] and DIEM [61]. Both datasets include different styles
of program that are commonly watched on a daily basis, such as doc-
umentaries, video games, sports events, movie trailers, advertisements,
and TV news.

4.4. Data preprocessing

The raw eye-position data were segmented into blink, saccade, and
fixation (or smooth-pursuit) periods. First, we extracted the blink per-
iods by using the eyelid occlusion of both eyes. Specifically, we con-
sidered a blink to have occurred when both pupil diameters were zero
for at least 100ms (6 frames). Apart from the blink periods, artifacts
detected by the eye tracker were removed by using a linear interpola-
tion algorithm.

A standard method of identifying saccade and fixation periods is to
detect saccades by using velocity and/or acceleration thresholds
[46,25]. However, this method is only reliable at high sampling rates,
such as 240 Hz. Instead, we used the mean-shift clustering method in
the spatio-temporal domain, which is used in eye trackers with rela-
tively low sampling rates, such as 30 and 60 Hz [40].

5. Results

5.1. Expt1: mental fatigue induced by cognitive tasks

We first determined whether or not the cognitive tasks mPASAT
succeeded in inducing mental fatigue in the participants. To do so, we
investigated subjective ratings and eye-tracking measures that have

Fig. 4. Changes in subjective and objective measures of
mental fatigue after performing mPASAT. (A) Subjective rat-
ings of mental fatigue on an 11-point numerical rating scale
from 0 to 10. We found a significant increase in mental fatigue
in subjective ratings from phase 1 to 3 (p < .05, one-way
repeated-measures Friedman non-parametric ANOVA with
Dunn's post-hoc test). (B, C, and D) Right pupil diameter,
blink duration per minute, and saccade mean velocity. These
are widely used as fatigue-correlated measures. Right pupil
diameters significantly decreased from phase 1 to 3
(p < .005,), and blink duration per minute significantly in-
creased from phase 1 to 2 and 3 (from phase 1 to 2, p < .05;
from phase 1 to 3, p < .001). Saccade mean velocity slightly
decreased over the phases, but there was no significant dif-
ference (p= .056). For statistical analyses, we performed one-
way repeated measures ANOVA and post hoc Bonferroni
multiple comparisons. Boxes denote the 25th (Q1) and 75th
(Q3) percentiles. The line within the box denotes the 50th
percentile, while whiskers denote the upper and lower ad-
jacent values that are the most extreme values within
Q3+1.5(Q3−Q1) and Q1− 1.5(Q3−Q1), respectively.
Filled circles show outliers, and squares represent mean va-
lues.
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been widely used as fatigue-correlated measures in previous studies.
Next, we evaluated if our model could detect mental fatigue by cross-
validation methods. We also tried to determine whether the three novel
features sets could improve detection performance.

We investigated the participants’ subjective ratings of mental fa-
tigue before and after performing the mPASAT (Fig. 4A). Compared
with the subjective ratings in phase 1, i.e., before engaging in the
cognitive task, 12 and 14 out of 18 participants in phases 2 and 3,
respectively, reported increased mental fatigue. A repeated-measures
Friedman non-parametric ANOVA was done on the subjective ratings to
compare phases 1, 2, and 3, and it found a statistically significant effect
of phase (χ2= 7.36, n=18, d. f. = 2, p < .05). Dunn's multiple
comparisons post-hoc test showed a significant increase in subjective
ratings of mental fatigue from phases 1 to 3 (p < .05), but no sig-
nificant difference between phases 1 and 2 or between phases 2 and 3.

Next, we investigated changes over the phases in eye-tracking
measures that have been suggested as fatigue-correlated measures
[24,25,18]. Specifically, we investigated pupil diameters, blinking, and
saccade mean velocity. A one-way repeated measures ANOVA with post
hoc Bonferroni multiple comparisons was used to calculate the statis-
tical significance of the changes over the phases. In this analysis, we
computed these measures of each participant by taking averages during
each 5-minute phase.

We found a significant difference in both pupil diameters among
phases (F(2, 34)= 7.41, p < .005 for the left eye; F(2, 34)= 6.24,
p < .005 for the right eye, Fig. 4B). Post-hoc analyses revealed a sig-
nificant decrease from phase 1 to 2 and 3 (p < .05, p < .005, re-
spectively) for the left eye and from phase 1 to 3 (p < .005, Fig. 4B;
from phase 1 to 2, p= .14) for the right eye. As for the blink behaviors,
we found significant increases in duration, blink rate, and blink dura-
tion per minute over the phases. Among them, the blink duration per
minute showed the biggest difference over the phases in terms of effect
size (F(2, 34)= 9.08, p < .001, =η .348p

2 , Fig. 4C). Post-hoc compar-
isons revealed significant increases along with the progression of phases
(from phase 1 to 2, p < .05; from phase 1 to 3, p < .001). Finally, we
analyzed changes in the measures of saccade mean velocity. Although
they slightly decreased over the phases, there was no significant dif-
ference (F(2, 34)= 3.14, p= .0562, Fig. 4D).

Through this analysis, we found that the measures of pupil diameter
and blinking as well as the subjective ratings showed significant
changes from phase 1 to phase 3. Saccade mean velocity also showed a
small decrease after performing cognitive tasks, although this change
was not statistically significant. These changes in the eye-tracking
measures are consistent with the results of previous studies that in-
vestigated the changes in these measures with increasing mental fatigue
during a cognitive task [24,25,18]. Taken together, the results of the
subjective and eye-tracking measures indicate that the participants
experienced increased mental fatigue after engaging in the cognitive
tasks two times, i.e., in phase 3. We thus regarded phase 1 as a non-

fatigued circumstance and phase 3 as a fatigued circumstance, and
proceeded to develop a model that classified the states of phases 1 and
3.

In addition, we investigated the changes in saliency-based features
over the phases. Our hypothesis was that reflexive eye movement
guided by bottom-up attention increases with mental fatigue, which
could be captured as an increase in AUC scores of the saliency model. In
our experiment, we found that the AUC scores significantly increased
from phase 1 to 2 and 3 (A one-way repeated measures ANOVA with
post hoc Bonferroni multiple comparisons, F(2, 34)= 10.1, p < .001).
This result supports our hypothesis.

We built a fatigue detection model to differentiate eye-tracking data
before and after performing the cognitive tasks. Specifically, we used
eye-tracking data of 18 participants in phases 1 and 3. Our model used
features extracted from each 30 s worth of eye tracking data in each SV.
In other words, our model made a decision from 30 s of eye-tracking
data as to whether a participant was in a fatigued or non-fatigued state.
Phase 1 and 3 each consisted of nine 30-second SVs. Thus, the number
of samples was 18× 9×2=324 (162 samples for non-fatigue states,
and 162 samples for fatigued states; balanced datasets).

As a result of 20 iterations of ten-fold cross-validation, our model
detected mental fatigue with 91.0% accuracy (91.4% precision, 90.3%
recall, 90.8% F-measure, and chance 50%, Table 1). The feature se-
lection process selected 55 of the 181 features as the most dis-
criminative for classifiers for detecting mental fatigue. Although the
selected features changed somewhat in accordance with the training
dataset because our feature sets contained highly correlated features,
they were selected from all six groups. We also evaluated our model by
leave-one-subject-out cross-validation, where the models were trained
by using the data collected from all of the participants except one and
then tested on the data of the one participant left out of the training
data set. We repeated this process for all participants, and obtained an
accuracy of 88.6% (88.9% for younger adults, 88.2% for older adults
who were more than 50 years of age).

Our model has uniqueness in its novel use of feature sets associated
with gaze allocation, eye movement directions, and saliency-based
metrics to better capture mental fatigue in natural viewing situations.
Next, we investigated the contributions of these feature sets to fatigue
detection performance. Specifically, we built models using a subset of
the six feature sets and compared their model performances in ten-fold
cross-validation. We did the feature selection and hyper-parameter
optimization in the same way as in our model. First, we built a model
using only the three feature sets based on previous studies, i.e., feature
sets related to pupil measures, blinking, and oculomotor-based metrics.
The eye-tracking measures used as fatigue-correlated measures in the
previous subsection were included in the three feature sets. The model
performance was 77.1% accuracy, which was 13.9% lower than that of
our model. Next, we separately added each feature set to this model.
Consequently, the model accuracies increased to 84.7% as a result of
adding features related to gaze location, to 82.9% as a result of adding
features related to eye movement directions, and to 80.7% as a result of
adding saliency-based features. Therefore, we found that the three
feature sets each improved the model's performance, and when taken
together, they improved the model's performance by up to 13.9% (from
77.1 to 91.0%).

5.2. Expt2: sequence effect of repetitive video watching

We first investigated subjective ratings and eye-tracking measures
that have been widely used as fatigue-correlated measures in previous
studies. In the same manner as the first experiment, we performed a
statistical analysis using a repeated-measures Friedman non-parametric
ANOVA for subjective ratings and a one-way repeated measures
ANOVA for eye-tracking measures including pupil diameters, blinking,
and saccade mean velocity. As a result, we found no significant dif-
ference in the subjective ratings and eye-tracking measures over the

Table 1
Fatigue-detection-model performance in terms of their average scores after 20
iterations of ten-fold cross-validation. Fpre: three feature sets related to oculo-
motor, blinks, and pupil measurements used in the previous studies, Fsal: sal-
iency-based features, Femd: features related to eye movement directions, and
Fga: features related to gaze allocation.

Detection performance (%)

Model Accuracy Precision Recall F-measure

Fpre 77.1 78.6 72.9 75.6
Fpre+ Fsal 80.7 79.4 83.0 81.0
Fpre+ Femd 82.9 83.2 82.4 82.7
Fpre+ Fga 84.7 84.6 84.9 84.7
Fpre+ Fsal + Femd+ Fga 91.0 91.4 90.3 90.8

Values in bold in each column represent the highest of the performance.
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phases (p > .05). Thus, we regarded the participants’ state as being
non-fatigued in phases 1 and 3.

We next extracted features from the eye-tracking data in phases 1
and 3 and investigated whether our model could estimate the partici-
pants’ state as non-fatigued. Specifically, we obtained additional
11×9×2=198 samples in this experiment. To make the description
simple, we defined D1nf and D3nf to be the eye-tracking data of phases 1
and 3 in the experiment, respectively. We also defined C1nf and C3f to
be eye-tracking data in phases 1 and 3 collected from the first experi-
ment with the cognitive tasks. D1nf, D3nf, C1nf and C3f contained 99, 99,
162 and 162 samples, respectively. Here, *f and *nf represent data sets
for fatigue and non-fatigue states, respectively.

First, we trained our mental fatigue detection model using C1nf and
C3f and tested it using D1nf and D3nf. As a result, our model estimated
175 out of 198 samples (88.3%) as non-fatigued states. Next, we used
C1nf, C3f, and D1nf as training data and D3nf as test data. We found that
91 out of 99 samples (91.9%) were estimated as non-fatigued states.
These results suggest that our fatigue-detection model captured changes
resulting from mental fatigue induced by the cognitive tasks, not se-
quence effects of watching video.

6. Discussion

We built a model to detect mental fatigue of younger and older
adults in natural viewing situations. We collected eye-tracking data
from younger and older adults while they watched video and in-
vestigated whether our model could detect increased mental fatigue
induced by the auditory cognitive tasks (mPASAT). In the first experi-
ment, we used eye-tracking data before and after performing the cog-
nitive tasks and showed that our model detected mental fatigue with
91.0% accuracy (chance 50%) from only 30 s worth of eye-tracking
data. In our model, we added the three feature sets to better capture
mental fatigue in natural viewing situations, although they have not
been used before for detecting mental fatigue. We then evaluated the
contributions of the three feature sets and found that they improved the
model's performance by up to 13.9% (from 77.1% to 91.0%). In the
second experiment where participants watched video clips without
engaging in cognitive tasks, we found that our model could estimate the
participants’ state as non-fatigued with up to 91.9% accuracy. The re-
sults suggest that our model could capture changes in eye-tracking data
resulting from mental fatigue induced by the cognitive tasks, not just
sequence effects of repetitive video watching.

The results of the experiments indicated that mental fatigue affects
the way people watch video clips in natural viewing situations and that
our model could capture this change. In addition, the prediction power
of the saliency model for fixations, or AUC scores, significantly in-
creased after the participants engaged in the cognitive tasks, suggesting
that eye movement might be more affected by bottom-up attention in a
stimulus-driven manner when an individual is fatigued. Previous lab
studies showed how neurodevelopmental and neurodegenerative dis-
eases influence eye movements in similar natural viewing situations,
and how a computational model could differentiate patients from
healthy controls by capturing this difference [42,38,10,43]. In these
studies, saliency-based features have been typically used as a means of
characterizing the changes in the control of attention in natural viewing
situations [42,10,43]. They explained these results on the basis of
findings of neuroscience studies as follows. The control of attention and
eye movements involves not only the visual area but also various other
brain regions [62]. Neurodevelopmental and neurodegenerative dis-
eases might affect their functions, which would lead to measurable
changes in eye movement behaviors [62]. As for mental fatigue, pre-
vious psychological studies showed that it also affects multiple cogni-
tive functions such as attention, motivation, and working memory [18].
However, whether and how mental fatigue affects eye movements in
natural viewing situations remained largely uninvestigated. One of our
contributions lies in providing the first empirical evidence of

measurable eye-tracking signatures of mental fatigue in natural viewing
situations, including saliency-based features.

The previous fatigue detection studies mainly investigated people
younger than 50 years of age [29], despite that age-related changes in
eye-tracking measures have been reported especially in older adults
[29,32,41]. In our study, we experimentally found that measures used
as fatigue-correlated measures such as saccade velocity, blinking, and
pupil diameters changed between younger and older adults in a manner
consistent with previous studies [29,32,41]. Some of these features
such as blinking duration were not selected as a subset of model fea-
tures by the feature selection process, and exhibited smaller changes
associated with mental fatigue compared with their changes between
age groups. In contrast, we found that some of the selected features
such as saliency-based features exhibited relatively larger changes over
the phases than the changes in age groups, which indicate that these
features might be sensitive to mental fatigue and robust to target's age.
The results showed that the combination of novel feature sets and
feature selection method might be used to develop a fatigue-detection
model robust to age-related changes in eye-tracking data.

In our experiment, we used auditory cognitive tasks (mPASAT) and
confirmed whether or not the tasks induced mental fatigue in the par-
ticipants by using subjective ratings as well as eye-tracking measures
that have been widely used as fatigue-correlated measures in previous
studies. About the subject ratings, 14 out of 18 participants reported
increased mental fatigue after engaging in the cognitive tasks two
times, which was a significant increase at the . 05 level. Interestingly,
the other participants who did not report increased mental fatigue were
more than 65 years old. Their eye-tracking measures still changed to
imply an increase in mental fatigue: decreased pupil diameters and
saccadic velocity, and longer and more frequent blinking. We cannot
make any conclusions about the difference in the subjective ratings for
mental fatigue between younger and older adults because the sample
size of the participants was too small to perform a statistical comparison
between age groups. If subjective and objective measures for mental
fatigue tend to be different in older adults, a fatigue detection model
might be important especially in the context of monitoring fatigue in
older adults. In future work, we will collect data with more participants
and compare the age-related differences in effect of mental fatigue on
subjective ratings and eye-tracking measures.

Our work has several limitations. First, the small number of parti-
cipants. We need to perform further research with more participants to
strongly confirm our results. Second, we collected eye-tracking data in a
lab setting. The controlled setting might influence the way people
watch video clips. Third, the limited content of the video clips used in
our experiment might be a potential problem. Although we made video
clips by combining multiple styles of programming, we used only
10min worth of eye-tracking data from each participant. There is a
possibility that the high performance of our model might have resulted
from over-fitting due to the limited content. Fourth, we treated a binary
state of mental fatigue. A model capable of inferring mental fatigue on a
scalar or ordinal scale would be more useful for monitoring and
managing individual's health. This limitation mainly comes from the
fact that we found significant changes in the subjective and eye-
tracking measures only from phases 1 to 3. In future work, we need to
collect data in which there are gradual increases in mental fatigue as
the workload of the cognitive tasks increases; this could allow us to test
whether or not our model could be extended to score mental fatigue on
a scalar or ordinal scale.

7. Conclusion

In contrast to previous studies focusing on detecting mental fatigue
during cognitive tasks, we aimed to develop a model enabling us to
detect mental fatigue in natural-viewing situations when an individual
is not performing cognitive tasks. In addition, considering the in-
creasing demand for health monitoring for older adults, we also aimed
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to make our model robust to multiple age-related changes in eye-
tracking measures. To this end, we devised a fatigue-detection model
including (i) novel feature sets to better capture mental fatigue in
natural-viewing situations and (ii) an automated feature selection
method to select a feature subset enabling the model to be robust to the
target's age. To test our model, we conducted the experiments and
collected eye-tracking data from 29 younger and older participants
while they watched video clips. Through the analyses, we demonstrated
that our model could detect increased mental fatigue induced by the
cognitive tasks from 30 s worth of eye-tracking data with 91.0% accu-
racy (chance 50%), which was up to 13.9% higher than a model based
on the previous studies. We also showed that the prediction power of
the saliency model for fixations significantly increased after the cog-
nitive tasks, suggesting that eye movement in natural viewing situations
might be more affected by bottom-up attention when an individual is
fatigued. Moreover, we discussed the possibility that subjective and
objective measures for mental fatigue tend to be different in older
adults, and suggest that robustness of our model to age-related changes
in eye-tracking measures would play a more important role in mon-
itoring mental fatigue in a wider age group including older adults.
Although we need to conduct further research, including an in-situ
study, we believe that our results could help develop a model to
monitor mental fatigue in everyday life.

Acknowledgments

This research was supported by the Japan Science and Technology
Agency (JST) under the Strategic Promotion of Innovative Research and
Development Program (this acknowledgement shall be retained in any
derivative works that you publish).

References

[1] Alemdar H, Ersoy C. Wireless sensor networks for healthcare: a survey. Comput
Netw 2010;54(15):2688–710.

[2] Favela J, Castro LA. Technology and aging. Aging research: methodological issues.
Springer; 2015. p. 121–35.

[3] Yamada Y, Shinkawa K, Takase T, Kosugi A, Fukuda K, Kobayashi M. Monitoring
daily physical conditions of older adults using acoustic features: a preliminary re-
sult. Stud Health Technol Inform 2018;247:301–5.

[4] Lu H, Frauendorfer D, Rabbi M, Mast MS, Chittaranjan GT, Campbell AT, et al.
Stresssense: detecting stress in unconstrained acoustic environments using smart-
phones. Proc ACM Int Conf Ubiquitous Comput. 2012. p. 351–60.

[5] Lyu Y, Luo X, Zhou J, Yu C, Miao C, Wang T, et al. Measuring photoplethysmogram-
based stress-induced vascular response index to assess cognitive load and stress.
Proc SIGCHI Conf Hum Factor Comput Syst 2015:857–66.

[6] Pfleging B, Fekety DK, Schmidt A, Kun AL. A model relating pupil diameter to
mental workload and lighting conditions. Proc SIGCHI Conf Hum Factor Comput
Syst 2016:5776–88.

[7] Rahman T, Adams AT, Ravichandran RV, Zhang M, Patel SN, Kientz JA, et al.
Dopple Sleep: a contactless unobtrusive sleep sensing system using short-range
doppler radar. Proc ACM Int Conf Ubiquitous Comput 2015:39–50.

[8] Faurholt-Jepsen M, Busk J, Frost M, Vinberg M, Christensen E, Winther O, Bardram
JE, Kessing L. Voice analysis as an objective state marker in bipolar disorder. Transl
Psychiatry 2016;6(7):e856.

[9] Szatloczki G, Hoffmann I, Vincze V, Kalman J, Pakaski M. Speaking in Alzheimer's
disease, is that an early sign? Importance of changes in language abilities in
Alzheimer's disease. Front Aging Neurosci 2015;7.

[10] Zhang Y, Wilcockson T, Kim KI, Crawford T, Gellersen H, Sawyer P. Monitoring
dementia with automatic eye movements analysis. Intell Dec Tech. 2016. p.
299–309.

[11] Shinkawa K, Yamada Y. Word repetition in separate conversations for detecting
dementia: a preliminary evaluation on regular monitoring service. AMIA Summits
on Translational Science Proceedings 2017 2018:206–15.

[12] Shinkawa K, Yamada Y. Topic repetition in conversations on different days as a sign
of dementia. Stud Health Technol Inform 2018;247:641–5.

[13] Esposito A, Esposito AM, Likforman-Sulem L, Maldonato MN, Vinciarelli A. On the
significance of speech pauses in depressive disorders: results on read and sponta-
neous narratives. Recent advances in nonlinear speech processing. Springer; 2016.
p. 73–82.

[14] Tsanas A, Little MA, McSharry PE, Ramig LO. Accurate telemonitoring of
Parkinson's disease progression by noninvasive speech tests. IEEE Trans Biomed Eng
2010;57(4):884–93.

[15] Boksem MA, Tops M. Mental fatigue: costs and benefits. Brain Res Rev
2008;59(1):125–39.

[16] Avlund K. Fatigue in older adults: an early indicator of the aging process? Aging
Clin Exp Res 2010;22(2):100–15.

[17] Lorist MM, et al. Mental fatigue and task control: planning and preparation.
Psychophysiology 2000;37(5):614–25.

[18] Hopstaken JF, Linden D, Bakker AB, Kompier MA. A multifaceted investigation of
the link between mental fatigue and task disengagement. Psychophysiology
2015;52(3):305–15.

[19] Di Stasi LL, McCamy MB, Pannasch S, Renner R, Catena A, Canas JJ, et al. Effects of
driving time on microsaccadic dynamics. Exp Brain Res 2015;233(2):599–605.

[20] Shahly V, Berglund PA, Coulouvrat C, Fitzgerald T, Hajak G, Roth T, et al. The
associations of insomnia with costly workplace accidents and errors: results from
the America insomnia survey. Arch Gen Psychiatry 2012;69(10):1054–63.

[21] Maghout-Juratli S, Janisse J, Schwartz K, Arnetz BB. The causal role of fatigue in
the stress-perceived health relationship: a MetroNet study. J Am Board Fam Med
2010;23(2):212–9.

[22] Hardy SE, Studenski SA. Fatigue and function over 3 years among older adults. J
Gerontol A Biol Sci Med Sci 2008;63(12):1389–92.

[23] Lin F, Chen D-G, Vance DE, Ball KK, Mapstone M. Longitudinal relationships be-
tween subjective fatigue, cognitive function, and everyday functioning in old age.
Int Psychogeriatr 2013;25(02):275–85.

[24] Schleicher R, Galley N, Briest S, Galley L. Blinks and saccades as indicators of fa-
tigue in sleepiness warnings: looking tired? Ergonomics 2008;51(7):982–1010.

[25] Di Stasi LL, Renner R, Catena A, Canas JJ, Velichkovsky BM, Pannasch S. Towards a
driver fatigue test based on the saccadic main sequence: a partial validation by
subjective report data. Transp Res Part C Emerg Technol 2012;21(1):122–33.

[26] Morad Y, Lemberg H, Yofe N, Dagan Y. Pupillography as an objective indicator of
fatigue. Curr Eye Res 2000;21(1):535–42.

[27] Benedetto S, Pedrotti M, Minin L, Baccino T, Re A, Montanari R. Driver workload
and eye blink duration. Transp Res Part F Traffic Psychol Behav
2011;14(3):199–208.

[28] Di Stasi LL, Catena A, Canas JJ, Macknik SL, Martinez-Conde S. Saccadic velocity as
an arousal index in naturalistic tasks. Neurosci Biobehav Rev 2013;37(5):968–75.

[29] Dawson D, Searle AK, Paterson JL. Look before you (s)leep: evaluating the use of
fatigue detection technologies within a fatigue risk management system for the road
transport industry. Sleep Med Rev 2014;18(2):141–52.

[30] Azim T, Jaffar MA, Mirza AM. Fully automated real time fatigue detection of drivers
through fuzzy expert systems. Appl Soft Comput 2014;18:25–38.

[31] Irving EL, Steinbach MJ, Lillakas L, Babu RJ, Hutchings N. Horizontal saccade
dynamics across the human life span. Invest Ophthalmol Vis Sci
2006;47(6):2478–84.

[32] Hill RL, Dickinson A, Arnott JL, Gregor P, McIver L. Older web users’ eye move-
ments: experience counts. Proc SIGCHI Conf Hum Factor Comput Syst
2011:1151–60.

[33] Yamada Y, Kobayashi M. Detecting mental fatigue from eye-tracking data gathered
while watching video. Proceedings of conference on artificial intelligence in med-
icine in Europe. 2017. p. 295–304.

[34] Ahlstrom C, et al. Fit-for-duty test for estimation of drivers’ sleepiness level: eye
movements improve the sleep/wake predictor. Transp Res Part C Emerg Technol
2013;26:20–32.

[35] Di Stasi LL, McCamy MB, Macknik SL, Mankin JA, Hooft N, Catena A. Saccadic eye
movement metrics reflect surgical residents’ fatigue. Ann Surg 2014;259(4):824–9.

[36] Craig A, Tran Y, Wijesuriya N, Nguyen H. Regional brain wave activity changes
associated with fatigue. Psychophysiology 2012;49(4):574–82.

[37] Crawford B. The dependence of pupil size upon external light stimulus under static
and variable conditions. Proc R Soc Lond B Biol Sci 1936;121(823):376–95.

[38] Crabb DP, Smith ND, Zhu H. What's on TV? Detecting age-related neurodegenera-
tive eye disease using eye movement scanpaths. Front Aging Neurosci 2014;6.

[39] Di Stasi LL, McCamy MB, Catena A, Macknik SL, Canas JJ, Martinez-Conde S.
Microsaccade and drift dynamics reflect mental fatigue. Eur J Neurosci
2013;38(3):2389–98.

[40] Xu P, et al. TurkerGaze: crowdsourcing saliency with webcam based eye tracking.
arXiv preprint arXiv:1504.06755.

[41] Dowiasch S, Marx S, Einhäuser W, Bremmer F. Effects of aging on eye movements in
the real world. Front Hum Neurosci 2015;9:46.

[42] Tseng P-H, Cameron IG, Pari G, Reynolds JN, Munoz DP, Itti L. High-throughput
classification of clinical populations from natural viewing eye movements. J Neurol
2013;260(1):275–84.

[43] Wang S, Jiang M, Duchesne XM, Laugeson EA, Kennedy DP, Adolphs R, et al.
Atypical visual saliency in autism spectrum disorder quantified through model-
based eye tracking. Neuron 2015;88(3):604–16.

[44] Treisman AM, Gelade G. A feature-integration theory of attention. Cogn Psychol
1980;12(1):97–136.

[45] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene
analysis. IEEE Trans Pattern Anal Mach Intell 1998(11):1254–9.

[46] Itti L. Quantifying the contribution of low-level saliency to human eye movements
in dynamic scenes. Vis Cognit 2005;12(6):1093–123.

[47] Borji A, Itti L. State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal
Mach Intell 2013;35(1):185–207.

[48] Carmi R, Itti L. The role of memory in guiding attention during natural vision. J Vis
2006;6(9):4.

[49] Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers.
Proceedings of the fifth annual workshop on computational learning theory
1992:144–52.

[50] Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans
Intell Syst Technol 2011;2(3):27.

[51] Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification

Y. Yamada, M. Kobayashi Artificial Intelligence In Medicine 91 (2018) 39–48

47

http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0005
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0005
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0010
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0010
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0015
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0015
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0015
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0020
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0020
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0020
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0025
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0025
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0025
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0030
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0030
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0030
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0035
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0035
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0035
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0040
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0040
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0040
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0045
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0045
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0045
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0050
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0050
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0050
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0055
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0055
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0055
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0060
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0060
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0065
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0065
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0065
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0065
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0070
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0070
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0070
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0075
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0075
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0080
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0080
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0085
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0085
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0090
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0090
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0090
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0095
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0095
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0100
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0100
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0100
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0105
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0105
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0105
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0110
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0110
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0115
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0115
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0115
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0120
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0120
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0125
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0125
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0125
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0130
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0130
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0135
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0135
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0135
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0140
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0140
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0145
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0145
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0145
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0150
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0150
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0155
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0155
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0155
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0160
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0160
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0160
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0165
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0165
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0165
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0170
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0170
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0170
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0175
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0175
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0180
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0180
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0185
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0185
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0190
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0190
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0195
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0195
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0195
http://arXiv:1504.06755
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0205
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0205
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0210
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0210
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0210
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0215
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0215
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0215
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0220
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0220
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0225
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0225
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0230
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0230
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0235
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0235
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0240
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0240
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0245
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0245
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0245
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0250
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0250
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0255


using support vector machines. Mach Learn 2002;46(1–3):389–422.
[52] Yan K, Zhang D. Feature selection and analysis on correlated gas sensor data with

recursive feature elimination. Sens Actuators B: Chem 2015;212:353–63.
[53] Huang MX, Kwok TC, Ngai G, Chan SC, Leong HV. Building a personalized, auto-

calibrating eye tracker from user interactions. Proc SIGCHI Conf Hum Factor
Comput Syst 2016:5169–79.

[54] Tass P, Rosenblum M, Weule J, Kurths J, Pikovsky A, Volkmann J, et al. Detection of
n:m phase locking from noisy data: application to magnetoencephalography. Phys
Rev Lett 1998;81(15):3291.

[55] Harel J, Koch C, Perona P. Graph-based visual saliency. Adv Neural Inf Process Syst
2006:545–52.

[56] Hjermstad MJ, Fayers PM, Haugen DF, Caraceni A, Hanks GW, Loge JH, et al.
Studies comparing numerical rating scales, verbal rating scales, and visual analogue
scales for assessment of pain intensity in adults: a systematic literature review. J

Pain Symptom Manage 2011;41(6):1073–93.
[57] Cook DB, O’Connor PJ, Lange G, Steffener J. Functional neuroimaging correlates of

mental fatigue induced by cognition among chronic fatigue syndrome patients and
controls. Neuroimage 2007;36(1):108–22.

[58] Cutting JE, DeLong JE, Brunick KL. Visual activity in Hollywood film: 1935 to 2005
and beyond. Psychol Aesthet Creat Arts 2011;5(2):115–25.

[59] Bordwell D. Intensified continuity visual style in contemporary American film. Film
Q 2002;55(3):16–28.

[60] Itti L, Carmi R. Eye-tracking data from human volunteers watching complex video
stimuli. 2009http://crcns.org/data-sets/eye/eye-1/about.

[61] Mital PK, Smith TJ, Hill RL, Henderson JM. Clustering of gaze during dynamic
scene viewing is predicted by motion. Cognit Comput 2011;3(1):5–24.

[62] Itti L. New eye-tracking techniques may revolutionize mental health screening.
Neuron 2015;88(3):442–4.

Y. Yamada, M. Kobayashi Artificial Intelligence In Medicine 91 (2018) 39–48

48

http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0255
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0260
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0260
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0265
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0265
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0265
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0270
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0270
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0270
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0275
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0275
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0280
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0280
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0280
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0280
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0285
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0285
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0285
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0290
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0290
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0295
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0295
http://crcns.org/data-sets/eye/eye-1/about
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0305
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0305
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0310
http://refhub.elsevier.com/S0933-3657(17)30614-0/sbref0310

	Detecting mental fatigue from eye-tracking data gathered while watching video: Evaluation in younger and older adults
	Introduction
	Related work
	Fatigue detection technology
	Fatigue correlated psychophysiological measures
	Eye-tracking measurements in natural viewing situations

	Mental fatigue detection model
	Feature extraction

	Experiments
	Participants
	Experimental design and procedure
	Eye-tracking data acquisition and stimuli
	Data preprocessing

	Results
	Expt1: mental fatigue induced by cognitive tasks
	Expt2: sequence effect of repetitive video watching

	Discussion
	Conclusion
	Acknowledgments
	References




