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Health has been defined as “a state of complete physical,  
mental and social well-being and not merely the absence of 
disease or infirmity”1. This definition may be expanded to 

view health not as a single state but rather as a dynamic process 
of different states in different points in time that together assemble  
a health trajectory2. The ability to understand the health trajec-
tories of different people, how they would unfold along different  
pathways, how the past affects the present and future health, and 
the complex interactions between different determinants of health 
over time are among the most challenging and important goals  
in medicine.

Following technological, organizational and methodologi-
cal advances in recent years, a new and promising direction has 
emerged toward achieving those goals: the analysis of large medi-
cal and biological datasets. With the rapid increase in the amount 
of medical information available, the term ‘big data’ has become 
increasingly popular in medicine. This increase is anticipated to 
continue as data from electronic health records (EHRs) and other 
emerging data sources such as wearable devices and multinational 
efforts for collection and storage of data and biospecimens in desig-
nated biobanks will expand.

Analyses of large-scale medical data have the potential to identify 
new and unknown associations, patterns and trends in the data that 
may pave the way to scientific discoveries in pathogenesis, classifi-
cation, diagnosis, treatment and progression of disease. Such work 
includes using the data for constructing computational models to 
accurately predict clinical outcomes and disease progression, which 
have the potential to identify people at high risk and prioritize them 
for early intervention strategies3, and to evaluate the influence of pub-
lic health policies on ‘real-world’ data4. However, many challenges  
remain for the fulfillment of these ambitious goals.

In this Review, we first define big data in medicine and the vari-
ous axes of medical data, and describe data-generation processes, 
more specifically considerations for constructing longitudinal 
cohorts for obtaining data. We then discuss data-analysis meth-
ods, the potential goals of these analyses and the challenges for  
achieving them.

Big data in medicine
The definition of ‘big data’ is diverse, in part because ‘big’ is a rela-
tive term. Although some definitions are quantitative, focusing 

on the volume of data needed for a dataset to be considered big5,  
other definitions are qualitative, focusing on the size or complexity 
of data that are too large to be properly analyzed by traditional data-
analysis methods6. In this Review, we refer to ‘big data’ as qualita-
tively defined.

Medical data have unique features compared with big data in 
other domains7. The data may include administrative health data, 
biomarker data, biometric data (for example, from wearable tech-
nologies) and imaging, and may originate from many different 
sources, including EHRs, clinical registries, biobanks, the inter-
net and patient self-reports8. Medical data can also be character-
ized and vary by states such as (i) structured versus unstructured 
(for example, diagnosis codes versus free text in clinical notes); (ii) 
patient-care-oriented versus research-oriented (for example, hos-
pital medical records versus biobanks); (iii) explicit versus implicit 
(for example, checkups versus social media), and (iv) raw versus 
ascertained (data without processing versus data after standardiza-
tion and validation processes).

Defining axes of data
Health data are complex and have several different properties. As 
these properties are quantitative, we can view them as ‘axes’ of the 
data. Some properties may be easy to quantify, such as the num-
ber of participants, the duration of longitudinal follow up, and the 
depth, which may be calculated as the number of different types of 
data being measured. Other properties may be more challenging to 
quantify, such as heterogeneity, which may be computed using vari-
ous diversity indices9. In this context, healthcare data may be viewed 
as having the axes described below (Figs. 1 and 2b).

Number of participants (axis N). Sample size in an important con-
sideration in every medical data source. In longitudinal cohorts, 
planning the desired cohort size—calculated on the basis of an 
estimate of the number of predefined clinical endpoints expected 
to occur during the follow-up period—is critical to reaching suf-
ficient statistical power10. As a result, a study of rare disease trajec-
tory before symptom onset would require a very large number of 
subjects and is often impractical. Retention rate is also important 
in determining the cohort size11. The main limitations for increas-
ing sample size are the recruitment rate, and financial and organi-
zational constraints.
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Depth of phenotyping (axis D). Medical data may range from the 
molecular level up to the level of social interactions among subjects. 
It may be focused on one specific organ or system in the body (such 
as the immune system) or may be more general and contain infor-
mation about the entire body (as with total-body magnetic reso-
nance imaging).

At the molecular level, data may be obtained by a variety of 
methods that analyze a diverse array of ‘omics’ data, which broadly 
represents the information contained within a person’s genome and 
its biological derivatives. Omics data may include transcriptional, 
epigenetic, proteomic and metabolomic data12. Another rich source 
of omic-level information is the human microbiome, the collective 
genome of trillions of microbes that reside in the human body13.

Additional phenotypes that may be obtained include demo-
graphics and socioeconomic factors (for example, ethnicity and 
material status), anthropometrics (for example, weight and height 
measurements), lifestyle habits (for example, smoking, exercise, 
nutrition), physiome or continuous physiological measurements 
(for example, blood pressure, heart rhythm and glucose measure-
ments, which can be measured by wearable devices), clinical phe-
notyping (for example, diagnoses, medication use, medical imaging 
and procedure results), psychological phenotyping and environ-
mental phenotyping (for example, air pollution and radiation level 
by environmental sensors that connect with smartphones). Diverse 
data types pose an analytical challenge, as their processing and inte-
gration requires in-depth technical knowledge about how these data 
were generated, the relevant statistical analyses, and the quantitative 
and qualitative relationship of different data types14.

In the construction of a prospective cohort, the choice of the type 
and the depth of information to measure is challenging and depends 
on many considerations. Each test should be evaluated on the basis 
of its relevance, reliability and required resources. Relevance relies 
on other epidemiological studies that found significant associations 
with the studied health outcomes. Reliability includes selecting 
methods that pass quality testing, including calibration, mainte-
nance, ease of use, training, monitoring and data transfer. Resources 
include both capital and recurrent costs.

Additional considerations include finding the right balance 
between exploiting known data types (such as genomic information) 
and exploring new types of data (such as new molecular assays) that 
have not been previously studied for the scientific question and are 

therefore more risky but may lead to new and exciting discoveries 
(hence exploration versus exploitation). It is also important to con-
sider that the rapid acceleration of newer and cheaper technologies 
for data processing, storage and analysis will hopefully enable mea-
surements of more data types and for larger cohorts as time pro-
gresses. One striking example is the cost of DNA sequencing, which 
decreased over one-million-fold in the past two decades15. Another 
consideration is the possibility that the mechanisms sought, and the 
answers to the scientific questions, depend on components that we 
cannot currently measure; therefore, considering which biospeci-
mens to store for future research is also important.

Longitudinal follow-up (axis F). Longitudinal follow-up includes 
the total duration of follow-up, the time intervals between 
data points (or follow-up meetings, in the case of longitudinal 
cohorts), and the availability of different data types in each point.  
Long-term follow-up allows observation of the temporal sequence 
of events.

It has been hypothesized that the set point of several physiologi-
cal and metabolic responses in adulthood is affected by stimulus or 
insults during the critical period of embryonic and fetal life devel-
opment, a concept known as ‘fetal programming’16. For example, 
associations between low birthweight and type 2 diabetes mellitus, 
coronary heart disease and elevated blood pressure have been dem-
onstrated17. Therefore, for full exploration of disease mechanisms, 
the follow-up period should ideally be initiated as early as possible, 
with data collection starting from the preconception stage, fol-
lowed by the pregnancy period, delivery, early and late childhood, 
and adulthood (hence the ‘from pre-womb to tomb’ approach)18. 
Although such widespread information is rarely available in most 
data sources, large longitudinal studies that recruit women at 
pregnancy are emerging, such as The Born in Guangzhou Cohort 
Study19 and the Avon Longitudinal Study of Parents and Children20.

Another important consideration in longitudinal cohorts is 
adherence of the participants to follow-ups. Selection bias owing to 
loss to follow-up may negatively affect the internal validity of the 
study21. For example, the UKBiobank was criticized as having selec-
tion bias because of the low response rate by participants (5.5%)22. 
Disadvantaged socioeconomic groups, including ethnic minori-
ties, are more likely to drop out and thus possibly bias the results. 
It is therefore important to consider the effect of various reten-
tion strategies on different subpopulations in longitudinal studies, 
specifically for studies with a long follow-up period11. To increase 
adherence to follow-ups, incentives are sometimes used. For exam-
ple, the Genes for Good study uses incentives such as interactive 
graphs and visualizations of survey responses, as well as personal 
estimates of genetic ancestry, for participant retention23.

Interactions between subjects included in the data (axis I). The 
ability to connect each subject in the data to other people who are 
related to him or her is fundamental to the ability to explore mecha-
nisms of disease onset and progression, and gene-environment 
interactions. Such relations may be genetic, which would allow cal-
culation of the genetic distance between different people, or environ-
mental, such as identifying people who share the same household, 
workplace, neighborhood or city. Intentional recruitment of sub-
jects with genetic or environmental interactions increases the power 
to answer these scientific questions. One example is twin cohorts, 
such as the Finnish Twin Cohort24 or recruitment of family triads 
of mothers, fathers and their offspring, such as The Norwegian 
Mother and Child Cohort Study25. Of note, recruitment of geneti-
cally related people or people from the same environment may 
result in decreased heterogeneity and diversity of the cohort.

Heterogeneity and diversity of the cohort population (axis H). 
Including factors such as age, sex, race, ethnicity, disability status, 

Standardization (S)
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Number of participants (N)

Depth of phenotyping (D)

Longitudinal follow-up (F)

Interactions (I)Heterogeneity (H)

Fig. 1 | the different axes of health data. The complexity of large health 
datasets can be represented by distinct axes, each encompassing a 
quantifiable property of the data.
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socioeconomic status, educational level and geographic location is 
important. The process of selecting a cohort that will fully repre-
sent the real-world population is challenging. Challenges arise from 
a variety of historical, cultural, scientific and logistical factors, as 
the inclusion process involves several steps: selection of a subject 
for inclusion in the study, consent of the subject, and selection of 
the subject data to be analyzed by the study researchers. Sampling 
bias may arise at each of these steps, as different factors may affect 
them26. One example is volunteer bias, as it has been shown that 
people who are willing to participate in studies may be systemati-
cally different from the general population27.

However, high heterogeneity in the study population and inclu-
sion of disadvantaged socioeconomic groups are important for gen-
eralization of the results to the entire population. Medical research 
of under-represented minorities and people of non-European 
ancestry is often lacking in many fields28. One of the most promi-
nent examples of this is in genetics, in which the vast majority of 
participants in genome-wide association studies are of European 
descent29. Many other fundamental studies in medicine have 
included only a relatively homogenous population. For example, 
the original Framingham Heart Study30, which included residents 
of the city of Framingham, Massachusetts, and the Nurses’ Health 
Study31, which included registered American nurses, were relatively 
homogeneous in environmental exposures and education level, 
respectively. Thus, although many important studies were based on 
these cohorts, the question of whether their conclusions apply to the 
general population remains open32. Current studies such as the All 
of Us Research Program define heterogeneity as one of their explicit 
goals, with more than 80% of the participants recruited so far being 
from historically under-represented groups33.

Nonetheless, increasing the heterogeneity of the study popula-
tion (for example, by including participants of a young age) may 
increase the variability in the phenotype tested and decrease the 
anticipated rate of clinical endpoints expected to occur during the 
study period, and therefore will require a larger sample size to reach 
significant results.

Standardization and harmonization of data (S). Health data 
may come from many disparate data sources. Using these sources 
to answer desired clinical research questions requires comparing 
and analyzing these sources concurrently. Thus, harmonizing data 
and maintaining a common vocabulary are important. Data can be 
either collected in a standardized way (for example, ICD-9 diagno-
ses, structured and validated questionnaires) or can be categorized 
at a later stage by standard definitions.

Standardizing medical data into a universal format will enable 
collaborations across multiple countries and resources34,35. For 
example, the Observational Health Data Sciences and Informatics 
initiative is an international collaborative effort to create open-
source unified common data models from a transformed large 
network of health databases34. This enables a significant increase in 
sample size and in heterogeneity of data, as shown in a recent study 
that examined the effectiveness of second-line treatment of type-2 
diabetes, using data made available by the Observational Health 
Data Sciences and Informatics initiative from 246 million patients 
from multiple countries and cohorts36.

Another interesting solution is to characterize and standardize 
descriptions of datasets in a short identification document that will 
accompany them, a concept described as ‘datasheets for datasets’. 
Such a document will include the characteristics, motivations and 
potential biases of the dataset37.

Linkage between data sources (L). The ability to link different data 
sources and thereby retrieve information on a specific person from 
several data sources is also of great value. For example, UKBiobank 
data are partially linked to existing health records, such as those 
from general practice, hospitals and central registries38. Linking 
EHRs with genetic data collected in large cohorts enables the  
correlation of genetic information with hundreds to thousands of 
phenotypes identified by the EHR39.

For this linkage to be possible, each person should be issued a 
unique patient identifier that will apply across databases. However, 
mostly due to privacy and security concerns, unique patient iden-
tifiers are currently not available40. For tackling this, two main 
approaches have been suggested. The first is to create regulation 
and legislative standards to ensure the privacy of the participants. 
The second is to give patients full ownership of their own informa-
tion and thereby allow them to choose whether they permit linkage 
to some or all of their medical information. For example, Estonia 
was the first country to give its citizens full access to their EHRs41,42. 
The topic of data ownership is debatable and has been discussed 
elsewhere43,44.

Additional aspects of medical data have been previously 
described as part of the FAIR principles for data management: find-
able, accessible, interoperable and reusable. The data should be (i) 
findable, specifically registered or indexed in a searchable resource, 
because knowing which data exist is not always easy; (ii) accessible, 
as access to data by the broad scientific community is important 
for it to reaching its full scientific potential; (iii) interoperable,  
with a formal and accessible applicable language for knowledge 
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representation, which is also a part of the standardization axis 
described above; and (iv) reusable, which includes developing tools 
for scalable and replicable science, a task that requires attention  
and resources45.

How is big data generated?
Longitudinal population studies and biobanks represent two 
sources of big data. Whereas much of the medical data available for 
analysis is passively generated in healthcare systems, new forms of 
biobanks, which actively generate data for research purposes, have 
been emerging in recent years. Biobanks were traditionally defined 
as collections of various types of biospecimens46. This definition has 
been expanded to “a collection of biological material and the associ-
ated data and information stored in an organized system, for a pop-
ulation or a large subset of a population”47. Biobanks have increased 
in variety and capacity, combining different types of phenotyping 
data; this has created rich data resources for research48. Unlike tra-
ditional, single-hypothesis-driven studies, these rich datasets try to 
address many different scientific questions. The prospective nature 
of these studies is especially important, because the effects of differ-
ent factors on disease onset can be analyzed.

Although the concept of mega biobanks49 is not well defined in 
the literature, it can be viewed qualitatively as biobanks that inte-
grate many of the data axes mentioned above at a broad scale and 
includes data measured on large sample sizes (axis N) together 
with deep phenotyping of each subject (axis D) for a long follow-
up period (axis F), collected and stored with standardization (axis 
S), and allowing interactions between participants (axis I) and with 
external sources (axis L) to be studied. Prominent examples of these 
include UKBiobank50, All of Us Research33, Kadoorie biobank51, 
Million Veteran program49 and Mexico City study52, as well as oth-
ers. A comprehensive survey of existing biobanks is presented in the 
review in ref. 26.

‘Deep cohorts’: a tradeoff between axes
In the construction of a biobank or a longitudinal cohort, each of 
the axes of data mentioned above has to be carefully assessed, as 
each has its costs and benefits. Limited research resources dictate an 
inherent tradeoff between different axes, and the ideal dataset that 
measures everything on everybody is unattainable. One necessary 
tradeoff is between the scale of the data gathered (axis N) and the 
depth of the data (axis D). For example, EHRs can contain medical 
information on millions of people but rarely include any molecu-
lar phenotypes or lifestyle assessments. Another example is ‘N-of-1 
trials’. These could be used as a principled way to design trials for 
personalized medicine53 or run a deep multidimensional profile of 
carefully selected subjects54.

Medium-sized cohorts of hundreds or tens of thousands of  
people represent an interesting operating point, as they allow col-
lection of full molecular and phenotypic data on a large enough 
population and thus enable the study of a wide variety of scientific 
questions. We can term such cohorts ‘deep cohorts’.

Since delicate disease patterns may be detected only when the 
data include a deep enough phenotyping (axis D) of a sufficient 
sample size (N), deep cohorts that apply the most-advanced tech-
nologies to phenotype, collect and analyze data from medium-sized 
cohorts may have an immense scientific potential. For example, we 
previously collected data for a cohort of over 1,000 healthy people 
and deeply phenotyped it for genetics, oral and gut microbiome, 
immunological markers, serum metabolites, medical background, 
bodily physical measures, lifestyle, continuous glucose levels and 
dietary intake. This cohort allowed us to study many scientific 
questions, such as the inter-person variability in post-meal glu-
cose responses55, the ability to predict human traits from microbi-
ome data, factors that shape the composition of the microbiome56, 
and associations between microbial genomic structural variants 

and host disease risk factors57. We are following this cohort longi-
tudinally and expanding its number of participants by tenfold, as  
well as adding new types of assays, with the goal of identifying 
molecular markers for disease with diagnostic, prognostic and ther-
apeutic value. Other examples of medium-sized cohorts include the 
University College London-Edinburgh–Bristol Consortium, which 
performs large-scale, integrated genomics analyses and includes 
roughly 30,000 subjects58, and the Lifelines cohort, which deeply 
phenotyped subset of ~1,000 of its ~167,000-subject cohort for 
microbiome, genetics and metabolomics59.

The other axes of medical data mentioned above also require 
financial resources. Therefore, planning a prospective cohort war-
rants careful consideration of these tradeoffs and utilization of cost-
effective strategies. For example, both the duration of longitudinal 
follow-up, and the number and types of tests that are performed dur-
ing follow-up visits (axis F) have financial costs. Increasing the het-
erogeneity of the cohort (axis H) may also come at a cost: in the All 
of Us Research Program, US National Institutes of Health funding 
was provided to support recruitment of community organizations 
to increase the cohort’s racial, ethnic and geographic diversity33. 
Additional tradeoffs are very likely to come up when collecting data, 
some of which we discussed above in the individual axes sections. 
The tradeoffs between different axes of medical data and specifically 
between scale (axis N) and depth (axis D) are presented in Fig. 2.

Numerous additional challenges exist in the construction of a 
large longitudinal cohort26. Many of the challenges that arise from 
the collection, storage, processing and analysis of any medical data 
(as discussed in the ‘Potential and challenges’ subsection below) are 
amplified as the scale and the complexity of the data increase. In 
most cases, specialized infrastructure and expertise are needed to 
overcome these challenges, as the generation of new cost-effective 
high-throughput data requires expertise in different fields. In addi-
tion, many research applications emanating from these sources of 
data are interdisciplinary in nature. This presents an organizational 
challenge in creating collaborations between clinicians and data sci-
entists, and in educating physicians to understand and apply tools 
for large-scale data sources.

Ensuring participant compliance with the study protocol is also 
essential for ensuring scientific merit of the data. Several exam-
ples of this include fasting before blood tests and accurate log-
ging of daily nutrition and activities in a designated application55. 
Compliance assessment by itself can also be challenging, as it often 
relies on self-reporting by participants. Finally, maintaining public 
trust and careful consideration of legal and ethical issues, especially 
those regarding privacy and de-identification of study participants, 
are crucial to the success of these studies60–63.

Constructing a biobank requires considerable resources and, as 
a result, biobanks are much harder to establish in low- and middle-
income countries. As a result, these populations remain under-rep-
resented and under-studied. The geographical distribution of the 
main biobanks worldwide is presented in Fig. 3.

How is big data analyzed?
How can utilization of these massive datasets achieve the potential 
of medical data analyses? How can we bridge the gap between the 
collected data, and our understanding and knowledge of human 
health? The answer to these questions can be broadly described by 
the common term ‘data science’. Data science has been defined by as 
being segregated into three distinct forms of analysis tasks: descrip-
tion, prediction and counterfactual prediction64. This distinction 
holds true for medical data of any type and scale, and helps with the 
temptation to conflate different types of questions about analysis of 
the data65. These tasks can be defined and used as described below.

Descriptive analysis. Descriptive analysis can be broadly defined 
as “using data to provide a quantitative summary of certain features 
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of the world”64. A few examples include retrospective analyses of 
the dynamics of body mass index (BMI) in children over time in 
order to define the age at which development of sustained obesity 
occurs66, and correlation of the differences in the normal body tem-
perature of different people and mortality67. Descriptive analysis 
approaches are useful for unbiased exploratory study of the data 

and for finding interesting patterns in the data, which may lead to 
testable hypotheses.

Prediction analysis. Prediction analysis aims to learn a mapping 
from a set of inputs to some outcome of interest, such that the 
mapping can later be used to predict the outcome from the inputs 
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Canada CARTaGENE biobank119 43,000 

USA All of Us33

Million Veteran Program49
1,000,000
> 600,000  

Mexico The Mexico City Prospective Study52 150,000 

Iceland deCODE Genetics 500,000 

UK UK Biobank38

Avon Longitudinal Study of Parents
and Children (ALSPAC)20

500,000
> 15,000  

Netherlands Lifelines Biobank120 > 167,000 

Denmark Danish National Biobank121

Norway HUNT - Nord-Trøndelag Health Study122 125,000 

Sweden Biobank Sweden

Finland FinnGen 500,000 

Estonia Estonian Biobank123 52,000 

Israel Project 10K 10,000 

Saudi Arabia Saudi Biobank 200,000 

Qatar Qatar Biobank124 60,000 

China China Kadoorie Biobank51

Guangzhou Biobank125
> 500,000
30,000  

Japan BioBank Japan126 200,000 

Korea National Biobank of Korea127 500,000 

Taiwan Taiwan Biobank128 200,000 

Fig. 3 | Global distribution of several biobanks and cohorts. Geographical distribution of the main biobanks and cohort studies that are currently 
collecting and analyzing health data. Websites: deCODE Genetics, https://www.decode.com/; Biobank Sweden, https://biobanksverige.se/english/
research/; FinnGen, h tt ps :/ /w ww .f in ng en .f i/ en /f in ngenresearchprojectisanexpeditiontothefrontierofgenomicsandmedicine; Project 10K, http://www.
weizmann.ac.il/sites/Project10K/; Saudi Biobank, https://kaimrc.med.sa/?page_id=1454.
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in a different unseen set. It is thus applied in settings in which  
there is a well-defined task. Prediction analysis holds the potential 
for improving disease diagnostic and prognostic (as discussed in the 
‘Potential and challenges’ subsection below). Of note, the ability to 
construct accurate predictive models is heavily reliant on the avail-
ability of big data. Perhaps the most striking and famous examples 
are the recent advances in neural networks68, which rely heavily on 
data at a large-enough scale and on advances in computing infra-
structure; this enables the construction of prediction models.

Algorithmic advances in images, sequences and text process-
ing have been phenomenal in recent years, riding on the wave of 
big data and deep learning methods. Taking the field of image 
recognition as an example, one of the most important factors for 
the phenomenal recent success was the creation and curation of a 
massive image dataset known as ‘ImageNet’69. One hope is that the 
accumulation of similarly large, ascertained datasets in the medical 
domain can advance healthcare tasks at a magnitude similar to that 
of the change in image-recognition tasks. Prominent examples are 
Physionet70 and the MIMIC dataset71, which have been instrumental 
in advancing machine-learning efforts in health research72. These 
data have been used for competitions and as a benchmark for quite 
a few years, and are increasing in size and depth. Reviews on the 
potential of machine learning in health are provided in refs. 73–76.

One particularly promising direction of deep learning combined 
with massive datasets is that of ‘representation learning’77; that is, 
finding the appropriate data representation, especially when the 
data are high-dimensional and complex. Healthcare data are usually 
unstructured and sparse, and can be represented by different tech-
niques, based on domain knowledge to fully automated approaches. 
The representation of medical data with all of its derivatives (clinical 
narratives, examination reports, lab tests and others) should be in a 
form that will enable machine-learning algorithms to learn models 
with the best performance from it. In addition, the data represen-
tation may transform the raw data into a form that allows human 
interpretability with the appropriate model design78.

Counterfactual prediction. One major limitation of any observa-
tional study is its inability to answer causal questions, as observa-
tional data may be heavily confounded and contain other limiting 
flaws79. These confounders may lead to high predictive power of a 
model that is driven by a variety of health processes rather than a 
true physiological signal80. Although proper study design and use 
of appropriate methods tailored to the use of observational data for 
causal analysis81–84 may alleviate some of these issues, this remains 
an important open problem. One promising direction that uses 
some of the data collected at large scale to tackle causal questions 
is Mendelian randomization85. Studies involving large-scale genetic 
data and phenotypes combined with prior knowledge may have 
some ability to estimate causal effects86. Counterfactual prediction 
thus aims to construct models that address limiting flaws inherent 
to observational data for inferring causality.

Potential and challenges
The promise of medical big data depends on the ability to extract 
meaningful information from large-scale resources in order to 
improve the understanding of human health. We discussed some 
of the potentials and challenges of medical data analysis above. 
Additional broad categories that can be transformed by medical 
data include those discussed below.

Disease diagnosis, prevention and prognosis. The use of compu-
tational approaches to accurately predict future onset of clinical out-
comes has the potential for early diagnoses, and either prevention 
or decrease in the occurrence of disease in both community and 
hospital settings. As some clinical outcomes have well-established 
modifiable risk factors, such as cardiovascular disease87, prediction 

of these outcomes may enable early, cost-effective and focused pre-
ventive strategies for high-risk populations in the community set-
ting. In the hospital setting, and specifically in intensive care units, 
early recognition of life-threatening conditions enables an earlier 
response from the medical team, which may lead to better clini-
cal outcomes. Numerous prediction models have been developed 
in recent years. One recent example is the prediction of inpatient 
episodes of acute kidney injury88. Another example is the prediction 
of sepsis, as the early administration of antibiotics and intravenous 
fluids is considered crucial for the management of sepsis89. Several 
machine-learning-based sepsis-prediction algorithms have been 
published90, and a randomized clinical trial demonstrated the ben-
eficial real-life potential of this approach, decreasing patient length 
of stay in the hospital and in-hospital mortality91.

Similarly, the same approach can be used to predict the progno-
sis of a patient with a given clinical diagnosis. Identifying subgroups 
of patients who are most likely to deteriorate or develop a certain 
complications of the disease can enable targeting of these patients 
and the use of strategies such as more frequent follow-up schedule, 
changes in medication regime or a shift from traditional care to pal-
liative care92.

Devising a clinically useful prediction model is challenging 
for several reasons. The predictive model should be continuously 
updated, accurate, well-calibrated and delivered at the individual 
level with adequate time for early and effective intervention by cli-
nicians. It should help identify the population in which an early 
diagnostic or prognostic will benefit a patient. Therefore, predic-
tion of unpreventable or incurable disease is of less immediate use, 
although such models may be clinically relevant in the future, as new 
therapeutics and prevention strategies emerge. Another important 
consideration is model interpretability, which includes understand-
ing of the mechanism by which the model works; that is, model 
transparency or post hoc explanations of the model. Defining the 
very notion of interpretability is not so straightforward, and it may 
mean different things93. Finally, a predictive model should strive to 
be cost-effective and broadly applicable. A model based on existing 
information in EHR data is much more economical than a model 
based on costly molecular measurement.

The real-life success of a predictive model depends both on its 
performance and on the efficacy of prevention strategies that physi-
cians can apply when they receive the information output by the 
model. One of the concerns about the real-life implementation of 
prediction models is that it will eventually result in over-diagnosis. 
Through the use of highly sensitive technologies, it is possible to 
detect abnormalities that would either disappear spontaneously or 
have a very slow and clinically unimportant progression. As a result, 
it is possible that more people will be unnecessarily labeled as being 
at high risk94. Another concern is algorithmic bias, which may be 
introduced in many ways. For example, it has been shown that an 
algorithm that is widely used by health systems exhibits racial bias95. 
Thus far, very few predictive models have been assessed in a real-life 
setting, and more studies are needed to validate the clinical utility of 
these tools per each specific clinical endeavor.

Modeling disease progression. Chronic diseases often progress 
slowly over a long period of time. Whereas some medical diagnoses 
are currently based on predefined thresholds, such as a hemoglobin 
A1C percentage of 6.5% or above for the diagnosis of diabetes mel-
litus96, or a BMI of 30 kg/m2 or above for the diagnosis of obesity 
(https://www.who.int/topics/obesity/en/), these diseases may be 
viewed as a continuum, rather than as a dichotomic state. Modeling 
the continuous nature of chronic diseases and progression over time 
is often challenging due to many reasons, such as incompleteness 
and irregularity of data, and heterogeneity of patient comorbidities 
and medication usage. Large-scale deep phenotyping of subjects can 
help overcome these challenges and allow a better understanding of 
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disease progression97. Notably, this view of disease as a continuum 
may allow the study of early stages of disease in healthy cohorts, 
without confounders such as medications and treatments, pro-
vided that the disease markers are well defined, measured and span 
enough variation in the studied population. Diabetes (diagnosed 
via hemoglobin A1C percentage), obesity (diagnosed via BMI) and 
hyperlipidemia (diagnosed via cholesterol values) are good exam-
ples in which this can be done, and may lead to the definition of 
disease risk scores for various diseases.

Genetic and environmental influence on phenotypes. The infor-
mation on genetic and environmental exposures collected in bio-
banks combined with data on health outcomes can also lead to 
many discoveries on the effects of genetic and environmental  
determinants on disease onset and progression98—that is, nature 
versus nurture—and quantification of the magnitude of each of 
these determinants99. Despite many advances in genetic research 
over the past decades, major challenges such as small sample sizes 
and low population heterogeneity still remain29. This has led to 
the emergence of a new approach that uses EHR-driven genomic 
research, which combines data available in the EHR and pheno-
typic characterizations, and enables calculation of the effect size 
of a genetic variant not for one disease or trait but for all diseases 
simultaneously, also called a ‘phenome-wide association study’100,101. 
However, the use of large-scale data sources also raises challenges 
in standards for defining disease and in efforts to extract character-
istics of patients from EHRs, which is not always a straightforward 
task. To do so, one needs to incorporate medical knowledge on the 
data-generation process and validate the algorithms of extraction 
from raw data (https://www.phekb.org/).

Target identification. The development of new drugs is a very 
complex process, with over 90% of the chemical entities tested not 
making it to the market102. This process starts with identification 
of disease-relevant phenotypes and includes basic research, target 
identification and validation, lead generation and optimization, 
preclinical testing, phased clinical trials in humans, and regula-
tory approval (Fig. 4). Target identification, defined as ‘identifying  
drug targets for a disease’, and target validation, defined as  
‘demonstrating an effect of perturbation of the target on disease out-
comes and related biomarkers’, are essential parts in drug discovery  
and development.

The traditional pharmaceutical industry’s screening process  
for the identification of new drug targets is costly and long, and 
includes activity assays, in which the compounds are tested through 
the use of high-throughput methods, based on interaction with the 
relevant target proteins or selected cell lines, and low-throughput 
methods, run on tissues, organs or animal models. This traditional 
screening method is characterized by a high dropout rate, with 
thousands of failures per one successful drug candidate102. Animal 
models are often used for these tasks, but they have a substantial 
disadvantage in the development of new drugs because their limited 
congruence with many human diseases severely affects their trans-
lational reliability103.

There is thus a great need for new approaches to drug develop-
ment. Human multi-omics data and physiological measurements 
at scale from deeply phenotyped cohorts is one such direction 
and is considered one of the most promising potentials of analyz-
ing big data in medicine, as humans themselves will serve as the 
future model organisms104,105. First, analysis of large-scale health 
data may identify new, unknown associations106 and therefore may 
allow the discovery of new biomarkers and novel drug targets, such 
as by mapping existing genetic-association findings to drug targets 
and compounds107. Second, analysis of biological and medical data 
may be used to evaluate the chances of success of drugs discovered 
and tested on animal models before the costly and time-consuming 

stages of preclinical and clinical trials. Third, potential therapeutic 
interventions discovered via human data analysis with an estab-
lished safety profile, such as nutritional modification or supple-
ments and drugs with existing approval by the US Food and Drug 
Administration, may be considered for direct evaluation in human 
clinical trials (Fig. 4). Finally, human data can be used to investigate 
differences in drug response and potential side effects104. Since some 
drugs affect only a subset of the treated target patient population, 
using human data to distinguish responders from non-responders, 
and to prioritize responders for clinical trials, can have great utility. 
Analysis of large-scale human omics data therefore has the poten-
tial to accelerate drug development and reduce its cost. Indeed, it 
has been estimated that selecting targets with evidence from human 
genetics data may double the success rate of the clinical develop-
ment of drugs108.

Systematic analysis of large-scale data by various computational 
approaches can also be used to obtain meaningful interpretations 
for the repurposing of existing drugs109. For example, clinical infor-
mation from over 13 years of EHRs that originated from a tertiary 
hospital has led to the identification of over 17,000 known drug–
disease associations and to the identification of terbutaline sulfate, 
an anti-asthmatic drug, as a candidate drug for the treatment of 
amyotrophic lateral sclerosis110. Another example is the use of pub-
licly available molecular data for the discovery of new candidate 
therapies for inflammatory bowel disease111.

Improvement of health processes. Big-data analysis can allow the 
investigation of health-policy changes and optimization of health 
processes4. It has the potential to reduce diagnostic and treatment 
errors, eliminate redundant tests112 and provide guidance for bet-
ter distribution of health resources113. Realizing the potential of this 
direction requires close interaction with medical organizations in 
order to map the existing processes, understand the clinical impli-
cations, and decide on the desired operating points, tradeoffs and 
costs of mis- and over-diagnoses.

Disease phenotyping. Phenotyping of disease and health and the 
study of variation between people represent another potential of 
studying rich and novel types of data. For example, we previously 
characterized the variation between healthy people in response to 
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Fig. 4 | using human-based omics data in drug development. Utilization 
of large-scale human multi-omics data in the process of drug development 
may aid in the following: (1) identification of new drug targets; (2) 
evaluation of drug candidates that were identified by animal models using 
human data before preclinical and clinical trials and; (3) identification of 
therapeutic targets with a well-established safety profile, which may be 
considered for a direct evaluation in clinical trials in humans.
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food, based on deep phenotyping of a 1,000-person cohort that 
included, to our knowledge, the first large-scale continuous glucose 
monitoring and gut microbiota profiling of healthy people55.

Another potential is to refine current phenotyping of disease. 
For example, there have been attempts to refine the classification of 
type 2 diabetes and find subgroups from available data97,114. Another 
example is Parkinson’s disease, for which recent advances in genet-
ics, imaging and pathologic findings coupled with observed clinical 
variability, have profoundly changed the understanding of the dis-
ease. Parkinson’s disease is now considered to be a syndrome rather 
than a single entity, and the International Parkinson and Movement 
Disorders Society have commissioned a task force for the redefini-
tion of this disease115–117.

Precision medicine. Analysis of big data in health that takes into 
account individual variability in omics data, environment and life-
style factors may facilitate the development of precision medicine 
and novel prevention and treatment strategies118. However, cau-
tion should be taken, with careful assessments of how much of the 
change observed in the phenotype tested is due to variability within 
people53. It is not obvious that many of the medical questions of 
interest will be answered through big datasets. Historically, small 
and well-designed experiments were the primary drivers of medical 
knowledge, and the burden of showing a change in this paradigm is 
now put on new methodologies.

conclusion
Big data in medicine may provide the opportunity to view human 
health holistically, through a variety of lenses, each presenting an 
opportunity to study different scientific questions. Here we charac-
terized health data by several axes that represent different properties 
of the data. The potential scientific value of collecting large amounts 
of health data on human cohorts has recently been recognized, with 
a rapid rise in the creation of large-scale cohorts aiming to maxi-
mize these axes. However, since maximizing each axis requires 
both resources and effort, it is inevitable that some axes come 
at the expense of others. Analysis of big data in health has many  
challenges and is in some sense a double-edged sword. On one  
hand, it provides a much wider perspective on states of health and 
disease, but on the other hand, it provides the temptation to delve 
into the details of molecular descriptions that may miss the big 
picture (as in the ‘seeing the whole elephant’ analogy). In addition, 
real-world evidence that it will translate into improved quality of 
care is currently lacking. However, the potential to improve health-
care is still immense, especially as patients’ conditions and medi-
cal technologies become more and more complex over time. With 
the collection of more deeply phenotyped large-scale data, many 
scientific questions about disease pathogenesis, classification, diag-
nosis, prevention, treatment and prognosis can be studied and can 
potentially lead to new discoveries that may eventually revolution-
ize medical practice.
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