
Access control in *nix

• Users and groups

– Any process is characterized by a user identifier (UID) and a list of

group identifier (GUID)

– UID equal to 0 represents root

– newgrp permits to change the primary GUID

• Files and privileges

– Every file is characterized by a pair UID/GUID (changed by

chown/chgrp)

– ls -l represents 9 privileges; their meaning depends on the file

type (file or directory)

– Also: sticky bit, setuid and setgid

– Current file systems offer additional privileges (’man lsattr’)

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso1 c©Stefano Paraboschi and Pierangela Samarati

Evaluation of access control in *nix

• Access control has the granularity of file

• No conditional authorizations

• setuid violates the least privilege principle

• Root is all-powerful and it is difficult to limit its responsibility

• Only positive authorizations

• Administration is based on root and owner

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso2 c©Stefano Paraboschi and Pierangela Samarati

Access control in Windows NT

• Every subject is represented by a Security Identifier (SID)

• (Almost) Every object has a security descriptor

– files, processes, threads, pipes, shared memory areas, registry

entries, ...

• The security descriptor contains the owner SID, the group SID, a

Discretionary ACL (DACL) and a System ACL (SACL)

• Each element in an ACL is an Access Control Element (ACE), an

elementary authorization, with subject, action, type (allow, deny or

audit) and several flags

• The action is a 32-bit access mask (only part of the bits have been

specified); 16 bits are applicable to every object (they are divided into

3 families) and 16 are specific to the object type

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso3 c©Stefano Paraboschi and Pierangela Samarati

Access tokens and request evaluation

• Each process or thread is associated with an Access token

• It contains: user’s account SID, user groups SIDs, logon SID, privilege
list, owner SID, primary group SID, default DACL

• There is support for impersonation

• Request evaluation:

– The Access token is compared with the ACEs in the DACL

– The first match of the ACE’s SID with the SID in the Access Token
determines the outcome

– If there is no DACL → open model

– If there is no match within the DACL → closed model

I.e., a null DACL is different from an empty DACL

– The SACL is evaluated in the same way and it specifies the
actions that have to be logged

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso4 c©Stefano Paraboschi and Pierangela Samarati

Comments on the access control mechanism

• The mechanism operates at a low level

• It is difficult to introduce abstract mechanisms to manage privileges

• It is not suitable to decentralized administration

• Accessing the DACL, it is possible to completely manage the access

policy to the object

The DACL is set on object creation, typically using the DACL in the

access token used by the creator

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso5 c©Stefano Paraboschi and Pierangela Samarati

Privileges in Windows

• System privileges represent specific tasks

– making a backup, debugging a process, increasing quotas,

creating accounts, etc.

• Privileges can be considered as authorizations-without-objects

• They are represented in the access token

• Access tokens may be localized, i.e., they can depend on the network

node in which they are created

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso6 c©Stefano Paraboschi and Pierangela Samarati

Impersonation in Windows

• Impersonation permits to acquire a different “identity” for the

execution of a specific task

– Similar to the setuid and setgid mechanism

– A privilege is needed to activate impersonation

– The process/thread acquires a new Access Token

– Win2k has introduced a restricted token, used to remove access

rights

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso7 c©Stefano Paraboschi and Pierangela Samarati

Access control inheritance in Windows

• Securable objects (the ones with a security descriptor) may contain
other securable objects

– E.g., directories/folders may contain files, registry keys may
contain subkeys

• Security descriptors are automatically propagated from an object to
all the objects contained within it

– Before Win2k, ACLs of containing objects were copied by default
at object creation

– Since Win2k, inherited ACEs virtually appear at the end of the
ACLs of contained objects (dynamic evaluation)

– For each ACE it is possible to specify if:

∗ The ACE has to be propagated
∗ It has to be propagated recursively or only at the first level
∗ It applies only to descendants

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso8 c©Stefano Paraboschi and Pierangela Samarati

Concise evaluation of Windows access control

• Overall, a powerful mechanism that satisfies many requirements

• It is adequate as an implementation mechanism, it is too complex to

be used directly

• There is an opportunity for the design of access control tools that

– start from a high-level description of access requirements

– automatically produce a correct representation using DACLs,

SACLs, privileges, impersonation, inheritance, etc.

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso9 c©Stefano Paraboschi and Pierangela Samarati

HTTP access control

• HTTP requests may require authorization (answer 401)

• Authentication is passed in the HTTP header, base64 encoded

• Two mechanisms

– Basic (in HTTP 1.0): username/password in clear

– Digest (in HTTP 1.1): MD5 of username, password and a nonce

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso10 c©Stefano Paraboschi and Pierangela Samarati

Apache access control

• Access rights are represented by a .htaccess file per directory,

or in the Apache configuration file within a <Directory> section

– AllowOverride is typically set to None; it has to be set to

AuthConfig or All

• Access rights are represented by a sequence of directives;

user-based access control

– AuthType: Basic or Digest

– AuthName: The name of the realm; it represents a domain of

resources, sharing the same authentication

– AuthUserFile/AuthDigestFile: Location of the password file

– AuthGroupFile/AuthDigestGroupFile: Location of the group file

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso11 c©Stefano Paraboschi and Pierangela Samarati

Positive and negative autorizations in Apache

Authorizations can be positive or negative. Order directive

Users can specify an order that define how to interpret positive/negative

authorizations. Three choices:

deny,allow negative authorizations are evaluated first and access is

allowed by default. A requestor is granted access if it does not have

any negative authorizations or it has a positive autorization.

allow,deny positive authorizations are evaluated first and access is

denied by default. A requestor is denied access if it does not have

any positive authorization or it has a negative authorization.

mutual-failure : A requestor is granted access if it does not have any

negative authorizations and it has a positive autorization.

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso12 c©Stefano Paraboschi and Pierangela Samarati

Example of Order directive

Order Deny,Allow
Deny from all
Allow from .elet.polimi.it

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso13 c©Stefano Paraboschi and Pierangela Samarati

Apache access control - host based

• Options for Allow and Deny

– allow/deny from host (DNS or IP mask)

– allow/deny from env= variable

• Require directive

– Options

∗ valid-user
∗ user user list

∗ group group list,

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso14 c©Stefano Paraboschi and Pierangela Samarati

Evaluation of Apache access control

• Strictly related with the hierarchical structure of the file system

– Access control may operate at a higher level if pages are

dynamically created

• It is a modern access control mechanism

– Flexible resource granularity

– Conditional authorizations (based on patterns)

– Multiple policies

– Positive and negative authorizations

– Policy combination and restrictions on it

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso15 c©Stefano Paraboschi and Pierangela Samarati

Access control in Java 2

• The focus is on the management of mobile code

• The security model of Java 1.0 was based on the construction of a

sandbox, dedicated to the execution of downloaded code

– Limited granularity (a single policy for all the code)

– Programmers could reimplement the access control services, but

this is impractical for many situations

• Java 2 introduced a novel Security Architecture, independent from the

host operating system

• JAAS (Java Authentication and Authorizaton Service) is the

environment containing the Security Architecture

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso16 c©Stefano Paraboschi and Pierangela Samarati

Security Policy in Java

• It consists of a list of permissions (an ACL), global or user-specified

• Each entry describes a piece of Java code and permissions that are
granted to it

• grant [signedBy "signer names",] [codeBase
"URL"] {
permission permission class name ”target name”, ”action”,
[signedBy ”signer names”];}

• The piece of code is described by a URL, with support for implication

• Examples:

grant codeBase "http://www.example.org/classes/"

{permission java.io.FilePermission "log" "write";};

grant {permission java.net.SocketPermission

"localhost:1024-", "listen";};

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso17 c©Stefano Paraboschi and Pierangela Samarati

Permissions in Java

• Abstract class Permission is specialized in many different ways

• Permissions typically have a target and an action

• Currently there are no negative permissions (for simplicity)

– A future addition is possible, as there are no constraints to their

introduction

• There are no permissions on single objects, only on classes

– The rationale is that the policy lives across program runs, whereas

objects live only during a program execution

• In Java 1.4, with the integration within JAAS, principals have been

introduced for permissions

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso18 c©Stefano Paraboschi and Pierangela Samarati

Access control evaluation in Java

• Permissions are not directly associated with classes

• Class ProtectionDomain realizes the link

– The URL in the policy typically identifies many classes; they are all

part of the same protection domain

• Access control is realized at 2 levels: SecurityManager and

AccessController

– SecurityManager can be specialized, whereas

AccessController is final

– The main method of SecurityManager is

checkPermission

– checkPermission of SecurityManager invokes

checkPermission of AccessController

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso19 c©Stefano Paraboschi and Pierangela Samarati

2-level access control in Java

• The presence of classes SecurityManager and

AccessController satisfies two conflicting requirements

– Allow a flexible evaluation policy

∗ SecurityManager is redefined

– Guarantee that a given permission is verified according to the

standard model

∗ The services of AccessController are directly invoked

by the application

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso20 c©Stefano Paraboschi and Pierangela Samarati

Run-time evaluation

• The Java execution environment presents an array of protection

domains (classes typically belong to many domains)

• To evaluate permissions, the intersection is considered

• Method doPrivileged can be used to overcome this limit

– it creates a separate execution environment, containing only the

protection domain of the invoked class

– It can be used to realize critical operations (e.g., change password)

– It is analogous to the setuid/setgid mechanism of Unix, but it offers

a finer granularity

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso21 c©Stefano Paraboschi and Pierangela Samarati

XACML

• A novel proposal by OASIS

• Similar proposals: EPAL (by IBM), WS-Policy (MS-IBM-BEA)

• Important goals

– Allow the central definition of access control policies, independent

from the specific target

– Allow the integration between separate mechanisms

– Identify a canonical architecture for an access control service

– Offer all the features of a modern access control solution: roles,

conditional authorizations, negative authorizations, flexible policy

combination, compatibility with multiple user authentication

mechanisms, etc.

• An implementation by Sun, version 1.1, is available

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso22 c©Stefano Paraboschi and Pierangela Samarati

XACML: an example (1)

<Policy PolicyId="ExamplePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0

:rule-combining-algorithm:permit-overrides">
<Target>
<Subjects>
<AnySubject/>

</Subjects>

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso23 c©Stefano Paraboschi and Pierangela Samarati

XACML: an example (2)
<Resources>
<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0

:function:anyURI-equal">
<AttributeValue DataType=
"http://www.w3.org/2001/XMLSchema#anyURI">
http://example.com/code/docs/developer-guide.html

</AttributeValue>
<ResourceAttributeDesignator DataType=
"http://www.w3.org/2001/XMLSchema#anyURI"
AttributeId=
"urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>
<AnyAction/>

</Actions>
</Target>

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso24 c©Stefano Paraboschi and Pierangela Samarati

XACML: an example (3)

<Rule RuleId="ReadRule" Effect="Permit">
<Target>
<Subjects>
<AnySubject/>

</Subjects>
<Resources>
<AnyResource/>

</Resources>

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso25 c©Stefano Paraboschi and Pierangela Samarati

XACML: an example (4)

<Actions>
<Action>
<ActionMatch MatchId=
"urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType=
"http://www.w3.org/2001/XMLSchema#string">
read

</AttributeValue>
<ActionAttributeDesignator DataType=
"http://www.w3.org/2001/XMLSchema#string"
AttributeId=
"urn:oasis:names:tc:xacml:1.0:action:action-id"/>

</ActionMatch>
</Action>

</Actions>
</Target>

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso26 c©Stefano Paraboschi and Pierangela Samarati

XACML: an example (5)

<Condition FunctionId=
"urn:oasis:names:tc:xacml:1.0:function:string-equal">
<Apply FunctionId=
"urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<SubjectAttributeDesignator DataType=
"http://www.w3.org/2001/XMLSchema#string"
AttributeId="group"/>

</Apply>
<AttributeValue DataType=
"http://www.w3.org/2001/XMLSchema#string">
developers

</AttributeValue>
</Condition>
</Rule>

</Policy>

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso27 c©Stefano Paraboschi and Pierangela Samarati

A concise evaluation of XACML

• Advantages

– It is in a more advanced status than competing proposals

– It is extremely powerful

– The use of XML makes it adequate for the Web infrastructure

• Cons

– The XML representation cannot be written by hand or interpreted

directly by a user (development tools have not yet been

implemented)

– Political environment has an important role in its success

– Native XML solution may be too expensive in some contexts (e.g.,

to control access to OS resources)

Sicurezza delle Applicazioni Informatiche: Soluzioni per il controllo dell’accesso28 c©Stefano Paraboschi and Pierangela Samarati

