
RSA Cryptosystem

Gerardo Pelosi

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)
Politecnico di Milano

gerardo.pelosi - at - polimi.it

G. Pelosi (DEIB) RSA Cryptosystem 1 / 41



Overview

Lesson contents

Public-key Cryptosystems

RSA Cryptosystem

Speed up RSA primitives
Numerical examples

RSA Key Length and Performances

Security of the RSA cryptoscheme [part-I]

Integer Factorization Problem (FP)
RSA Problem (RSAP)

Security of the RSA cryptoscheme [part-II]

G. Pelosi (DEIB) RSA Cryptosystem 2 / 41



Public-Key Cryptography (1)

PKC is also known as asymmetric-key cryptography, it employs two
separate keys:

Private key (for decryption) – kept secret and never shared

Public key (for encryption) – advertised publicly as part of a “digital
certificate” that includes also the name of the owner, the details of the
PKC scheme and some other information

〈A,M, C,K, {Enckpub(·)}, {Decpriv(·)}〉

If Alice wants to communicate confidentially with Bob, she can
encrypt a message using Bob’s publicly available key.

Such a communication is only decipherable by Bob as only Bob has
access to the corresponding private key.

G. Pelosi (DEIB) RSA Cryptosystem 3 / 41



Public-Key Cryptography (2)

PKC schemes are substantially slower than symmetric-key schemes.
They are most commonly used for:

the transport of either a “shared secret” or “session key” that is
subsequently used for bulk data encryption with a symmetric algorithm

encryption of small data payloads such as credit card numbers and PINs

providing “data integrity” and “data origin authentication”, i.e.
ensuring that the data have not been tampered with, and come from
the rightful sender

“entity authentication” and “authenticated key establishment”
protocols: typical examples are challenge-response protocols and the
SSL/TLS protocols

G. Pelosi (DEIB) RSA Cryptosystem 4 / 41



Public-Key Cryptography (3)

Outline of the authentication procedure:

Party A, willing to send an authenticated message m to party B,
applies the decryption function to m with A’s own private key to
obtain a digital signature s.
The authenticity of the message will be checked through applying the
encryption function with A’s public key to s and comparing the result
with the message m.

The result of the validity checking operation will match the message
only if the signature was produced with the correct secret key!

Usually, only a digest of the message is authenticated in order to get
computational and communication efficiency.

Therefore the typical authentication will make use of publicly known
and cryptographically strong hash function h(·). A computes:

s ← Deckpriv,A(h(m)), then sends: 〈m, s〉 to B

G. Pelosi (DEIB) RSA Cryptosystem 5 / 41



Public-Key Cryptography (4)

if A wants to send a message m to B with both authentication and
confidentiality she computes:

s ← Deckpriv,A(h(m)), c ← Enckpub,B (〈m, s〉)

and sends c to B

The processing steps undertaken by B to recover m from c are

Obtain: 〈m, s〉 ← Deckpriv,B (c), Check: h(m)
?
= Enckpub,A(s)

The alternative approach based on computing s ← Deckpriv,A(h(m)) and

c ← Enckpub,B (m) to transmit 〈c , s〉 to B is not secure against a passive adversary

who can peel off the part denoted by s from the message 〈c , s〉 and illegally re-use

it for sending messages with the same hash image (if possible) on behalf of A.

G. Pelosi (DEIB) RSA Cryptosystem 6 / 41



Public-Key Cryptography (5)

The only (currently) known way to implement PKC in practice is to make
use of (old) “number theoretic problems”. The most common ones are:

Integer Factorization Problem:
given a composite integer n, compute its factorization

∏
i pei

i , ei ≥ 1

Discrete Logarithm extraction in a cyclic group:
given (〈g〉, ·) and g1 = g x , find x ∈ {0, 1, . . . , |g |}

Other possible, non strictly number theoretic, problems are:

Finding the shortest vector in a l-dimensional lattice (vector space
with scalar coefficients over Zl or Ql), given a basis for the space and
a notion of distance (norm)

Decoding a “general linear code”

G. Pelosi (DEIB) RSA Cryptosystem 7 / 41



Public-Key Cryptography (6)

These problems allow both the PK encryption and decryption
functions (Enckpub(·), Deckpriv(·)) to be defined in such a way that

the public key and the private key are linked in a mathematical way
the knowledge of the public key tells you nothing about the private key
the knowledge of the private key allows you to decrypt messages
encrypted with the public key

The encryption functions are also called one-way trapdoor functions

These functions are:

easy to compute in one direction (i.e., knowing the public key)
computationally hard to invert, without knowing some secret
information (i.e., the private key)

G. Pelosi (DEIB) RSA Cryptosystem 8 / 41



Public-Key Cryptography (7)

Desiderata for the actual definition of both encryption and decryption
transformations require some thoughts

Indeed, the concept of PKC was so strange

it was not until 1976 that anyone thought of it:
W. Diffie and M. Hellman. 2006. New directions in cryptography.
IEEE Trans. Inf. Theor. 22, 6 (Sep. 1976), 644-654

while in 1978, he first full PKC cryptosystem was invented; i.e., RSA.

G. Pelosi (DEIB) RSA Cryptosystem 9 / 41



Rivest Shamir Adleman (RSA) - Cryptoscheme

Public Key: kpub

Let p, q be two prime integers (p ≈ q) – randomly chosen

RSA public modulus: n← p · q
RSA public exponent: e

Random← Z∗ϕ(n)
e ∈ {1 ≤ i ≤ ϕ(n)− 1 s.t. gcd(e, ϕ(n)) = 1}

kpub = 〈e, n〉

Private Key: kpriv

RSA private exponent: d ← e−1 mod ϕ(n) d ∈ Z∗ϕ(n)

kpriv = 〈p, q, ϕ(n), d〉

G. Pelosi (DEIB) RSA Cryptosystem 10 / 41



Rivest Shamir Adleman (RSA) - Cryptoscheme

One-way Function with Trapdoor

Encryption Function

Given a RSA public key kpub = 〈n, e〉, the message M and ciphertext C
spaces are defined as elements of Zn; i.e., m, c ∈ Zn

c ← Enckpub(m) = me mod ϕ(n) mod n

Decryption Function

Given a RSA private key kpriv = 〈p, q, ϕ(n), d〉, and a proper ciphertext
c ∈ Zn

m← Deckpriv (m) = cd mod ϕ(n) mod n

G. Pelosi (DEIB) RSA Cryptosystem 11 / 41



Rivest Shamir Adleman (RSA) - Cryptoscheme

In order to employ the previous definitions in a full cryptosystem it is
necessary to prove:

Dec(Enc(m)) = m, ∀m ∈ Zn

(me)d mod ϕ(n) mod n ≡ med mod ϕ(n) mod n
?≡ m mod n

Enc(Dec(c)) = c , ∀ c ∈ Zn

(cd)e mod ϕ(n) mod n ≡ ced mod ϕ(n) mod n
?≡ c mod n

The symmetry of the encryption and decryption functions allows us to
restrict the correctness proof only to the encryption transformation.

G. Pelosi (DEIB) RSA Cryptosystem 12 / 41



Rivest Shamir Adleman (RSA) - Cryptoscheme

Given n = p · q,m ∈ Zn; e, d ∈ Z∗ϕ(n) (e · d ≡ϕ(n) 1), we need to prove
that:

(me)d mod ϕ(n) mod n ≡ m mod n, ∀m ∈ Zn

we need to distinguish two cases:

1st case: gcd(n,m) = 1

In this case m has a multiplicative inverse in Zn: m ∈ Z∗n, where
|Z∗n| = ϕ(n) thus, for some integer t, we can write the following:

(me)d ≡n m1+tϕ(n) ≡n m · (mϕ(n))t ≡n m

Therefore,

(me)d mod ϕ(n) mod n ≡ med mod ϕ(n) mod n ≡ m mod n (cvd.)

G. Pelosi (DEIB) RSA Cryptosystem 13 / 41



2nd case: gcd(n,m) 6= 1

Being gcd(n,m) 6= 1 we can write (without loss of generality) that
gcd(n,m) = p, that is, we can assume m = u · p, for some integer u.

Consider that:

mϕ(q) mod q ≡ mq−1 mod q ≡ 1 mod q (obs. : gcd(q,m) = 1)

(mϕ(n))t mod q ≡ (m(q−1))(p−1)t mod q ≡ 1 mod q

(mϕ(n))t = 1 + s q, for some integers s and t.

Thus,

(me)d ≡n m1+tϕ(n) ≡n m · (mϕ(n))t ≡n m · (1 + s q)
m · (1 + s q) ≡n m + m s q ≡n m + u p s q ≡n m + (u s) n ≡n m

Hence:

(me)d mod ϕ(n) mod n ≡ med mod ϕ(n) mod n ≡ m mod n (cvd.)

G. Pelosi (DEIB) RSA Cryptosystem 14 / 41



Speeding Up of the RSA Encryption Function

If a repeated S&M strategy is used to compute modular exponentiations,
the complexity of performing the RSA encryption is of
dlog2 ϕ(n)e+ HW(e) multiplications, with HW(e) being the Hamming
Weight of the public exponent.

Typically, the RSA public exponent is chosen among the following
prime integers: {3 = 21 + 1, 17 = 24 + 1, 65537 = 216 + 1} in such a
way that it is always verified that e ∈ Z∗ϕ(n).
The security of a RSA public key kpub = 〈65537, n〉 is still guaranteed
by both the secrecy of the prime factors p, q and the secrecy of the
value of the Totient function: ϕ(n) = (p − 1)(q − 1).

Even if e is small (f.i., e=3), the secret exponent d = e−1 mod ϕ(n)
will have (with high probability) approximately the same bit-length of
ϕ(n) with a non-predictable Hamming weight.

G. Pelosi (DEIB) RSA Cryptosystem 15 / 41



Speeding Up of the RSA Decryption Function

To reduce the computational load of the repeated S&M of the decryption
function, we can exploit the CRT to obtain a ×4 speed-up. Given:

kpriv = 〈d , p, q, ϕ(n)〉, m← Deckpriv (c) = cd mod ϕ(n) mod n

We compute:

mp = cd mod p = cd mod (p−1) mod p,

mq = cd mod q = cd mod (q−1) mod q

and recombine the values through the following relations (CRT):

m = cd mod ϕ(n) mod n⇔
{

m = mp mod p
m = mq mod q

⇔
{

m = cd mod ϕ(p) mod p

m = cd mod ϕ(q) mod q

m ≡
(
q(q−1mod p)mp + p(p−1mod q)mq

)
mod n

G. Pelosi (DEIB) RSA Cryptosystem 16 / 41



Speeding Up of the RSA Decryption Function

Assuming n ≈ ϕ(n), t = dlog2 ne, and dlog2 pe ≈ dlog2 qe ≈ t
2

d mod ϕ(p), and d mod ϕ(q) will be t
2 bit long, with roughly t

4 bits
set to “1”

The computational complexity of a modular multiplication is
quadratic in the number of bits, reducing by a factor of 2 the size of
the operands yields a 4 times speedup, i.e. mul t

2
= 1

4mult .

Assuming the same cost for both a squaring and a multiplication, the
computation of mp, mq requires on average: 3

4(t − 1) mul t
2

op.s

modulo p and 3
4(t − 1) mul t

2
op.s modulo q

m← Deckpriv (c) avg. cost: O
(
3
2(t − 1) mult

)
m

CRT← Deckpriv (c) avg. cost: O
(
2 3

4(t − 1) 1
4mult

)
= O

(
1
4

3
2(t − 1)mult

)
G. Pelosi (DEIB) RSA Cryptosystem 17 / 41



Numerical Example (1)

Consider an RSA cryptosystem where kpub = 〈n, e〉 = 〈143, 77〉. Now,
knowing that n = p · q = 13 · 11:

1 Compute the corresponding private key, kpriv = 〈p, q, d , ϕ(n)〉.

2 Given the plaintext message m = 101 ∈ Zn, compute the
corresponding ciphertext through applying a repeated S&M strategy.

3 Given the ciphertext computed at step (2), show the computations
necessary to retrieve the original message through applying the
Chinese Remainder Theorem (CRT).

G. Pelosi (DEIB) RSA Cryptosystem 18 / 41



Numerical Example (2)

Consider an RSA cryptosystem where kpub = 〈n, e〉 = 〈143, 77〉. Now,
knowing that n = p · q = 13 · 11:

Compute the corresponding private key, kpriv = 〈p, q, d , ϕ(n)〉.

Solution

ϕ(n) = (p − 1)(q − 1) = 120 = 23 · 3 · 5
d = e−1 mod ϕ(n) = eϕ(ϕ(n))−1 mod ϕ(n) = 77ϕ(120)−1 mod 120⇒
d = e−1 mod ϕ(n) = 7731 mod 120
d ≡120 7731 ≡120 77111112 ≡120 ((((772) · 77)2 · 77)2 · 77)2 · 77 ≡120 · · ·
d = 53 mod 120.

The same result may be obtained through applying the extended Euclid’s
algorithm for the computation of ξ, d ∈ Zϕ(n) in the following relation:

1 = gcd(ϕ(n), e) = ϕ(n) · ξ + d · e

G. Pelosi (DEIB) RSA Cryptosystem 19 / 41



Numerical Example (3)

Consider an RSA cryptosystem where kpub = 〈n, e〉 = 〈143, 77〉.

1 Given the plaintex message m = 101 ∈ Zn, compute the
corresponding ciphertext through applying a repeated S&M strategy.

Solution

m = 101 ∈ Zn, n = 143, e = 77 = 10011012:

c = me mod n ≡143 10110011012 ≡143 ((((1012)2)2 · 101)2 · 101)2)2 · 101⇒
· · ·

c = 10177 mod n ≡143 95.

G. Pelosi (DEIB) RSA Cryptosystem 20 / 41



Numerical Example (4)

Consider an RSA cryptosystem where kpub = 〈n, e〉 = 〈143, 77〉.
Given c ≡n me ≡143 95, and n = p · q = 13 · 11 = 143;
ϕ(n) = 120, d ≡120 53, derive the plaintext applying the CRT.

Solution

m = cd mod ϕ(n) mod n⇔
{

m = mp mod p
m = mq mod q

where:

mp = cd mod ϕ(p) mod p ≡13 9553 mod 12 ≡13 45 mod 12 ≡13 10 and
mq = cd mod ϕ(q) mod q ≡11 9553 mod 10 ≡11 73 mod 10 ≡11 2

m ≡n

(
Mp ·M

′
p ·mp + Mq ·M

′
q ·mq

)
mod n

Mp = q = 11, M
′
p = q−1 mod p = 11−1 mod 13 ≡13 −2−1 ≡13 6

Mq = p = 13, M
′
q = p−1 mod q = 13−1 mod 11 ≡11 2−1 ≡11 6

⇒ m ≡143 (11 · 6 · 10 + 13 · 6 · 2) ≡143 101

G. Pelosi (DEIB) RSA Cryptosystem 21 / 41



Security of the RSA cryptoscheme

The Security of RSA cryptosystem is related to the computational
complexity of the integer factoring problem.

Factoring Problem (FP)

Given an integer n composed as the product of only two prime factors
n = p · q, find these factors.

RSA Problem (RSAP)

Given a ciphertext c = me mod n ∈ Zn, where n = p · q, e ∈ Z∗ϕ(n), find
m ∈ Zn

G. Pelosi (DEIB) RSA Cryptosystem 22 / 41



Factoring Problem (FP)

Notation

To measure the complexity of algorithms to factor an integer n the
following function is often employed:

Ln(α, β) = exp
(
β + o(1)

(
(log n)α(log log n)1−α

))
Notice that:

a complexity of O(Ln(0, β)) corresponds to a polynomial time
algorithm (the input size of the problem is logn).

a complexity of O(Ln(1, β)) corresponds to an algorithm which runs
in exponential time.

Hence, for 0 < α < 1, Ln(α, β) interpolates between polynomial and
exponential time and is a.k.a. sub-exponential function.

G. Pelosi (DEIB) RSA Cryptosystem 23 / 41



Factoring Problem (FP) - (1)

Trivial Division

Works quite well for removing primes from an integer n up to 12
digits (that is, numbers ≤ 1012).

Try every prime number up to
√

n and check if it is a factor of n ⇒
exponential complexity: Ln(1, 1)

A variation is to form a product x = p1p2p3 . . . pr of r primes and to
compute gcd(n, x) for finding the largest prime factor in n. Here is a
product of all primes p ≤ 97:

2305567963945518424753102147331756070

G. Pelosi (DEIB) RSA Cryptosystem 24 / 41



Factoring Problem (FP) - (2)

Elliptic Curve Method

This has a sub-exponential complexity Lp(1/2, c), where p denotes the
smallest factor of n.
It is appropriate when p ≤ 250

Quadratic Sieve

This is the fastest method for factoring integers with size between 2240

and 2300. It has complexity Ln(1/2, 1)

General Number Field Sieve

This is currently the most successful method for numbers greater than
2300 and has complexity Ln(1/3, 1.923)

G. Pelosi (DEIB) RSA Cryptosystem 25 / 41



Recommended Key Lengths - (1)

Currently 768-bit numbers are the largest that have been factored

(2000 machine-years on AMD-Opteron sigle core CPU 2.2 GHz, 2GiB
RAM [ref. www.iacr.org/2010/006.pdf])

it is recommended to employ moduli n = p · q of size at least 1024
bits to ensure medium-term security.

For long-term security the recommendations suggest modulus sizes
greater than 2048 bits.

G. Pelosi (DEIB) RSA Cryptosystem 26 / 41



Recommended Key Lengths - (2)

NIST recommended key lengths, considering the foreseen technological and

theoretical cryptanalysis advancements [updated 2011]

Date Security margin Symmetric cipher RSA
2010 80 2TDEA∗ 1024

2011 – 2030 112 3TDEA 2048
> 2030 128 AES-128 3072
>> 2030 192 AES-192 7680
>>> 2030 256 AES-256 15360

Security margin: Minimum computational effort expressed as the log2 of
the number of DES computations

Symmetric cipher: Suggested cipher to achieve the minimum adequate
level of security (Note: nTDEA = Triple DES Algorithm with n keys)

(*) The assessment of at least 80 bits of security for 2TDES is based on the

assumption that an attacker has no more than 240 matched ptx/ctx blocks

RSA: size of the RSA modulus to achieve the adequate security margin,
considering the best known integer factoring method (i.e., the GNFS)

G. Pelosi (DEIB) RSA Cryptosystem 27 / 41



RSA Performance

Overlook

RSA Hardware implementations are 1000× slower than both AES and
DES, and at least 100× slower in software (for moduli ≥ 512 bits).

Table : OpenSSL Performances on an AMD OpteronTM Processor-8378, 2.4Ghz (one core
used)

Security Margin Modulus Dec Enc (e = 216 + 1)
[bit] [ms] [ms]

80 1024 0.299 0.019
112 2048 2.021 0.062
128 3072 25.1 12.2
192 7680 113.3 14.1
256 15360 720.2 20.4

Currently, RSA is mainly used to exchange an ephemeral “session key”
(shared secret value) in order to employ it to exchange data enciphered via
a symmetric-key encryption scheme

G. Pelosi (DEIB) RSA Cryptosystem 28 / 41



Security of the RSA cryptoscheme

Lemma 1

The RSA problem is no harder than the “factoring” problem.

Proof.

Using a factoring oracle we first find the factorization of n.
We can now compute ϕ(n) = (p − 1)(q − 1) and then d = 1

e mod ϕ(n).
Once d has been computed it is easy to recover m via
cd ≡n med ≡n m1 mod ϕ(n)) ≡n m.
Hence, the RSA problem is no harder than “factoring”.

Fact

Major open question: how much easier is the problem of breaking RSA
(a.k.a. RSA-Problem), w.r.t. the Integer Factorization Problem (FP) ?

G. Pelosi (DEIB) RSA Cryptosystem 29 / 41



Security of the RSA cryptoscheme

Lemma 2

Knowing the private exponent d corresponding to the public key
kpub = 〈n, e〉 it is possible to efficiently factor n

Proof.

ed − 1 = s(p − 1)(q − 1) for some integer s.

Picking x∈Z∗
n, we know that xed−1≡n1 ⇒ we can compute y =

√
xed−1=x

ed−1
2

(ed−1 is known and will be even).
Therefore, we have the identity y2−1 ≡n 0 from which we compute a factor of n
as gcd(y − 1, n) in case y 6= ±1 mod n

If y = −1 mod n, we repeat this procedure from the beginning and pick
another value for x

If y = +1 mod n, it is possible to iterate the aforementioned procedure
starting from the square root of y .

G. Pelosi (DEIB) RSA Cryptosystem 30 / 41



Security of the RSA cryptoscheme

Lemma 3

Given a RSA modulus n and the value of ϕ(n), one can efficiently factor n

Proof.

Being ϕ(n) = (p − 1)(q − 1) = n − (p + q) + 1,

we have that
−(p + q) = ϕ(n)− n − 1

p q = n

Therefore, through trivial algebra we can define the 2nd degree equation in
the unknown Z :

Z 2 + (ϕ(n)− n − 1) Z + n = 0

the roots of this equation gives the prime factors p, q.

G. Pelosi (DEIB) RSA Cryptosystem 31 / 41



Security of the RSA cryptoscheme

Since modular arithmetic is expensive it may be tempting to have more users

sharing the same public modulus n, but employing different public/private

exponents: (ei , di ). Very fast HW implementations are obtained through tuning

the modular arithmetic to the specific value of n

Lemma 4

Given two RSA ciphertexts c1 = Enc〈n,e1〉(m), c2 = Enc〈n,e2〉(m), one can
easily recover the original message m if gcd(e1, e2) = 1.

Proof.

1 = gcd(e1, e2) = t1 e1 + t2 e2 for proper values t1, t2.
A pair of values for t1 and t2 can be computed by the Euclidean Algorithm.

Then,
ct1
1 ct2

2 mod n = (me1)t1(me2)t2 = m mod n

G. Pelosi (DEIB) RSA Cryptosystem 32 / 41



Security of the RSA cryptoscheme

Practical RSA systems often use a “small” fixed public exponent (e.g.,
e = 3) so as to cut down the computational cost for the sender.

Lemma 5

The use of a small public exponent is unsafe in case multicast
communications take place.

Proof.

Consider three RSA public keys: 〈n1, 31〉, 〈n2, 3〉, 〈n3, 3〉, and suppose someone
employs them to send the same message m thrice. Then, a passive attacker can
recover the message as: c1 = m3 mod n1

c2 = m3 mod n2

c3 = m3 mod n3

CRT
=⇒ X ≡ m3 mod (n1 n2 n3)

Since m3 < (n1 n2 n3), we must have X = m3 identically over the integers.

Thus, in polynomial time the attacker computes m = 3
√

X

G. Pelosi (DEIB) RSA Cryptosystem 33 / 41



Security of the RSA cryptoscheme

Fact 6

Generating two moduli sharing a prime exposes both of them to trivial
factoring. In fact, if n1 = p q1 and n2 = p q2, p can be obtained as
gcd(n1, n2).

Lemma 4, and Lemma 5 show that there are particular situations where it
is possible to break RSA without solving the factoring problem!
Key points to bring home:

the plaintext should be randomly padded before transmission. That
way the “same message” is never encrypted to two different people.

In addition, very small public exponents should be avoided:
e = 65537 = 216 + 1 is the usual choice currently in use.

the primes for moduli generations should be picked through employing
a sound (P)RNG initialized with at least a 128-bit long seed

G. Pelosi (DEIB) RSA Cryptosystem 34 / 41



Weaknesses w.r.t. Chosen Ciphertext Attacks (1)

We now show a trivial example of the reasons because the presented
“textbook RSA” is not secure w.r.t. CCAs.

In this scenario, an adversary is supposed to choose as many ctxs as
she wishes and to obtain their correct decryptions under the same
unknown key from an Oracle.

(You can think to a portable device running a RSA deciphering
primitive with the decryption key securely stored in it.
You can use it only to decipher ctxs different from the one that is
interesting for you!)

From these pieces of information the adversary can attempt to
recover either

the hidden secret key or
the ptx corresponding to a ctx not chosen by him

G. Pelosi (DEIB) RSA Cryptosystem 35 / 41



Weaknesses w.r.t. Chosen Ciphertext Attacks (2)

In the case of RSA scheme:

if an opponent wants to derive the message m corresponding to a certain
ctx c = me mod n

he can generate a random number x ∈ Zn

compute c ′ = (c · xe) mod n

submit to the Oracle a decryption request for c ′

Clearly, the Oracle will return the msg:

m′ = (c ′)d mod n

Therefore, the opponent can compute the following:

m′ = cd · xe d mod n⇒ m = m′ x−1 mod n

G. Pelosi (DEIB) RSA Cryptosystem 36 / 41



Weaknesses w.r.t. Chosen Ciphertext Attacks (3)

In order to avoid these kind of problems the RSA standard force to encrypt
a proper padding of the original message though a carefully designed
bijective function φ : Zn 7→ Zn, that is publicly known:

φ(a · b) 6= φ(a) · φ(b)

In order to encrypt a message m ∈ Zn the standard forces to compute:

c = (φ(m))e mod n

Thus if an oracle is asked to decrypt c ′ = (c · xe) mod n, where x is a
random number, then the returned value will be:

m′ = φ−1(cd · xe d mod n) = φ−1(φ(m) · x mod n)

while m would be equal to:

m = φ−1(cd mod n) = φ−1(φ(m))

Then,
m′ 6= m

G. Pelosi (DEIB) RSA Cryptosystem 37 / 41



Optimized Asymmetric Encryption Padding (OAEP)

By far, the most successful padding scheme in use today (corresponding to
the φ() function, previously introduced) was invented by Bellare and
Rogaway and is called OAEP or “Optimized Asymmetric Encryption
Padding”.

OAEP is a padding scheme which can be used with any function f which
is a one-way trapdoor permutation (e.g., RSA).

OAEP satisfies the following two goals:

Add an element of randomness to each ptx: two equal ptxs will result
in two different ctxs.

Prevent partial decryption of ciphertexts through ensuring that an
adversary cannot recover any portion of the ptx without being able to
invert the trapdoor one-way permutation f .

G. Pelosi (DEIB) RSA Cryptosystem 38 / 41



OAEP

Let f be any N-bit to N-bit trapdoor one-way permutation, e.g. for
N = 1024 take f as the RSA function c ≡n me , N = dlog2(n)e.
Let k0 and k1 denote numbers such that a computational effort of 2k0 or
2k1 is impossible (e.g. k0, k1 > 80).
Let H, G be two hash functions:

G : {0, 1}k0 → {0, 1}N−k0
H : {0, 1}N−k0 → {0, 1}k0

Let m be a message of N − k0 − k1 bits in length.
We then encrypt using the function

Enc(m) = f
(
{m||0k1 ⊕ G (r)} || {r ⊕ H(m||0k1 ⊕ G (r)))}

)
|| denotes bit-concatenation

r is a random bit string of length k0

m||0k1 means m followed by k1 zero bits

G. Pelosi (DEIB) RSA Cryptosystem 39 / 41



OAEP as a 2-stage Feistel network

G. Pelosi (DEIB) RSA Cryptosystem 40 / 41



Security of the RSA cryptoscheme

Theorem (RSA-OAEP Security)

In the random oracle model, if we model G and H as “truly random
functions” (which it is not, in practice) then RSA-OAEP is secure against
adaptive chosen ciphertext attacks and chosen plaintext attacks if the RSA
assumption holds.

The most common choices for the parameters of RSA-OAEP are:
k0 = k1 = 80, while G and H are defined through composing either SHA-1
or RIPEMD-160 hash functions

G. Pelosi (DEIB) RSA Cryptosystem 41 / 41


