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1 Preface

The mathematical framework employed in cryptography is the one offered by
abstract algebra, in particular group theory and finite fields theory. These notes
are provided as a support to the course and are by no means to be intended as
a full fledged algebra course. For a complete tractation on the subject, we refer
the interested reader to one or more of the following:

P.M.Cohn, Classic Algebra, 2000, John Wiley
M.Artin, Algebra - 2nd edition, 2010 Addison Wesley
Lidl R., Niederreiter H., Introduction to finite fields and their applications
1997, Cambridge University Press.
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2 Elements of group theory

An algebraic structure is a pair (S,Ω), where S is a set, commonly referred
to as the support of the structure and Ω is a set of operations (with specific
properties) acting on the elements of S. If the support S has a finite number of
elements, the structure is said to be finite and | S | is the order of the structure.
Two structures are particularly useful in cryptography: groups and finite fields.

Definition 2.1 (Group). A group is a pair (G, ∗), where G is the support of the
structure and ∗ is a binary, internal operation on G, i.e. a relation associating
every pair (a, b) of elements of G to one and only one element c ∈ G (thus
defined as a ∗ b), in such a way that the following properties hold:

• Associative property: ∀a, b, c ∈ G (a ∗ b) ∗ c = a ∗ (b ∗ c),

• Existence of a neutral element1: ∃e ∈ G : ∀a ∈ G a ∗ e = e ∗ a = a

• Existence of the inverses2: ∀a ∈ G ∃a ∈ G : a ∗ a = a ∗ a = e

If the operation also exhibits the following,

• Commutative property: ∀a, b ∈ G a ∗ b = b ∗ a

the group is said to be abelian or commutative.

The group operation is a generic binary operation, but we will denote it in the
following part of these notes employing either:

• Additive notation: the operation will be denoted by + and the neutral
element will be called zero and denoted by 0. The inverse element of a
will be denoted as −a and may be called the opposite of a.

• Multiplicative notation: the operation ∗ will be called product, and de-
noted with either · or the simple concatenation of the two involved ele-
ments. The neutral element will be called unity and denoted with 1 and
the inverse of the element a will be denoted by a−1.

We observe that, thanks to the associativity of the operation, it is possible to
define without problems the product of more than two elements of G, without
the need for parenthesization. In particular, the integer exponent powers can
be defined as :

• an = a · a · ... · a repeated n times, if n > 0

• an = e, if n = 0

• an = a−1 · a−1 · ... · a−1 repeated (−n) times, if n < 0

The associativity and the definitions of inverse and neutral element make
the usual properties of powers work:

• an · am = an+m

• (an)m = anm

1If there were two neutral elements e1, e2, they would be equal as e1 = e1 ∗ e2 = e2
2Given a, if there were two inverse elements b, c, they would be equal as b = b ∗ e =

b ∗ (a ∗ c) = (b ∗ a) ∗ c = e ∗ c = c
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Observe that, employing additive notation, the n-th power of an element a will
be denoted as na. Consequentially, the properties of the powers will be rewritten
as

• (na)+(ma) = (n+m)a: This has nothing to do with distributive property,
as our structure has only one operation, +)

• m(na) = (mn)a: This has nothing to do with the associativity between n
and m , as they are not elements of G, but merely indicating the number
of repetitions of an addition

Example 2.1 (Examples of group structures).

1. (Z,+) is an abelian (commutative) group

2. The set {A ∈Mn(R) |det A 6= 0} of square, nonsingular matrices over R,
with the usual matrix product is a non commutative group.

3. ({1,−1, i,−i}, ·) is a finite abelian group

4. The set of bijective applications of a set X in itself, together with the usual
composition of applications is a non abelian group.
If the set X is finite and | X |= n, the group is finite, has order n! and is
known as symmetric group over X (known also as Sn). S3 is the smallest
example of non-commutative finite group. E.g., π1 = (13)(2), π2 = (132),
π1 ◦ π2 6= π2 ◦ π1.

Definition 2.2 (Subgroup). A subset H of a group (G, ·) is a subgroup of G if
the “group properties” hold for (H, ·), where · is the same operation in (G, ·).

Note that to check whether (H, ·) is a subgroup of (G, ·) it is sufficient that one
of these three criteria holds.

1. (H, ·) is a subgroup of (G, ·) if and only if ∀h, k ∈ H we have that h·k ∈ H
and h−1 ∈ H.

2. (H, ·) is a subgroup of (G, ·) if and only if ∀h, k ∈ H we obtain that
h · k−1 ∈ H.

3. Let H a finite subset of G, (H, ·) is a subgroup of (G, ·) if and only if
∀h, k ∈ H we have that h · k ∈ H.

Example 2.2. Examples of subgroups of (G, ·)

1. The subsets {e} and G are trivial subgroup of the group (G, ·).

2. The set P of all the even numbers is a subgroup of (Z,+).

3. The set nZ of all numbers that are a multiple of n is a subgroup of (Z,+).

4. The set {A ∈ Mn(R) |det A = ±1} is a subgroup of the group of non-
singular square matrices with respect to the matrix-product ({A ∈Mn(R) |det A 6=
0}, ·)

5. The set {1,−1} is a subgroup of ({1,−1, i,−i}, ·)
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Definition 2.3 (Coset). Let (G, ·) be a group, H one of its subgroups and g
a generic element g ∈ G; the subset H · g = {h · g | h ∈ H} (respectively,
g ·H = {g · h | h ∈ H}) of G is called “the right (resp. left) coset3” of H in G
with representative element g.

If we are willing to rewrite the former definition in additive notation, the right
coset of H in G having g as representative element will be denoted by H + g
and will contain the elements {h+ g | h ∈ H}.

Example 2.3. Consider the group G = (Z,+) and the subgroup H = (5Z,+).
Given a generic element g ∈ G \H, we can build the following the set:

H + g = g + H = {g + 5l, l ∈ Z} = {a ∈ Z, a ≡ g mod 5}.

The last equality is justified by the observation that considering two elements of
the set, say them g+ 5l1, g+ 5l2, the modulo 5 divides their difference (i.e., the
result of the first plus the opposite of the second) thus each element in the set
can be expressed as the remainder of the division of g by 5 plus a multiple of 5.
The set H + g = g + H is a right and a left coset of H = (5Z,+).
Each coset includes an infinite number fo elements, although it is easy to recog-
nize only five distinct cosets H, H + 1, H + 2, H + 3, H + 4.

Definition 2.4 (Equivalence relation of group modulo a subgroup).
Let (G, ·) be a group and (H, ·) one of his subgroups, the binary relation ∼H

between two elements g, k of the group G denoted as g ∼H k is defined as:

g ∼H k ⇐⇒ g = h · k, for some h ∈ H⇐⇒ g · k−1 ∈ H

and is stated as “g is equivalent to k modulo H” as it is an equivalence relation
(i.e., a relation between two elements of the group exhibiting the symmetric,
reflexive and transitive property).

Indeed, since H is a group, the existence of a single neutral element allows to
state that e = g · g−1 ∈ H⇔ g ∼H g (reflexive prop.);
the existence of the inverse of every element in a group allows to state that if
g ∼H k ⇔ g ·k−1 ∈ H then also (g ·k−1)−1 = k ·g−1 ∈ H⇔ k ∼H g (symmetric
prop.).
Finally, if g ∼H k and k ∼H l, noting that g · k−1 ∈ H, and k · l−1 ∈ H,
g · k−1 · k · l−1 ∈ H⇔ g ∼H l (transitivity prop.).

Example 2.4. Consider the group G = (Z,+) and the subgroup H = (5Z,+).
Given g, k ∈ G, stating that “g is equivalent to k modulo H”, i.e., g ∼H k
means that g− k ∈ H, that is g− k is a multiple of 5, which is also stated (with
this choice of the group and subgroup) as “g is congruent to k modulo 5”.

An element b ∈ G is in the right coset H · g if b = h · g for some h ∈ H.
Furthermore, b = h · g ⇒ b · g−1 ∈ H, thus the set of b values equivalent to g
(i.e., the equivalence class [g]) coincides with the right coset H · g:

[g] = H · g
3In italian “coset” is translated as “laterale”
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As a consequence, the set of equivalence classes of G modulo H (or the set of
cosets of G given the subgroup H) defines a partition of G.

Indeed, if u ∈ [g1] then g1 ∼ u thus, by transitivity, u is equivalent to any other
element in [g1], therefore [u] = [g1]. Now if u ∈ [g1] ∩ [g2] we can conclude4

that [g1] = [g2]. Thus, given g1, g2, their equivalence classes are either identical
or disjoint. In other words, every element of G belongs to one and only one
equivalence class (right coset) and so the equivalence classes (right cosets) form
a partition of G.

Given a set of representatives of all distinct right cosets of H (i.e., a set of
representatives of the equivalence classess of G modulo H), say it R, we have
that:

G =
⋃
g∈R

H · g

It is worth noting that ∀ g ∈ G, the map H 7→ (H · g), is bijective. Indeed, as-
suming h1 6= h2, the non-injectivity would mean that h1 7→ h1 ·g, and h2 7→ h2 ·g
and consequentially h1g = h2g ⇒ h1 = h2 (contradiction). To acknowledge the
surjectivity of the map, it is sufficient to note that the set {h · g,∀h ∈ H} yields
all the elements of the coset H · g by definition.

From the said bijectivity, the number of elements in a coset H · g coincides with
the number of elements in the subgroup H, i.e., |H| = |H · g|.
Note that if you compose g with all the elements of H you obtain at most
|H| outcomes. In order to prove that there are at least |H| outcomes, consider
that in a right coset if h1 · g = h2 · g with different h1, h2 ∈ H, then you have a
contradiction as composing both members of the previous equality with (h2·g)−1

yields h1 = h2.

Example 2.5. Consider G = (Z,+), H = (5Z,+) and a generic element
g ∈ G, the congruence modulo 5 defines an equivalence relation, with the
coset H + g being constructed as 5k + g, where k is any integer in Z (n.b.,
(5k1 + g)− (5k2 + g) = 5(k1 − k2) ∈ H).
The equivalence classes (cosets), in this case are:
{. . .,-5,0,5,10,. . .}, {. . .-4,1,6,11,. . .}, {. . .-3,2,7,. . .}, {. . .-2,3,8,. . .}, {-1,4,9,. . .}.
Usually, we denote each class by choosing a representative element that coincides
with the smaller non-negative element of the equivalence class: [0],[1],[2],[3],[4].

Theorem 2.1 (Lagrange’s theorem). Let (G, ·) be a finite group of order n.
If H is a subgroup of G, then its order divides n, i.e, |H| | n.

Proof. Consider the relation ∼H defined before: the ∼H-equivalence classes are
distinct (i.e., are a partition of G), have the same size and are in finite number.
Denoting this number with r, we have that |G| = r|H|

We note that, in the general case, the inverse of Lagrange’s theorem does not
hold. However, the following theorem holds:

4Indeed, if the intersection is not the empty set, then u ∼ g1 and u ∼ g2 implies that
u = h1g1 = h2g2 ⇒ g1 = (h−1

1 · h2)g2 ⇒ g1 ∼ g2 ⇒ [g1] = [g2]; if the intersection is the
empty set, then [g1] 6= [g2]
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Theorem 2.2 (Inverse of Lagrange’s theorem for abelian groups).
Let (G, ·) be a finite abelian group of order n.
For each divider m of n (i.e., m | n), there exists at least a subgroup H with
order m.

As a consequence of Lagrange’s theorem, we obtain the following

Definition 2.5 (Subgroup Index).
Let (G, ·) be a finite group and H one of its subgroups. It is possible to define
the index of the subgroup H as the number of cosets of H in G.

This number is commonly indicated with [G : H], and can be obtained as |G||H| .

2.1 Cyclic Groups

Definition 2.6 (Cyclic Group).
Let (G, ·) be a group. If the set of elements obtained iterating the group operation
· on an element g ∈ G (i.e., g0 = e, g, g · g = g2, g2 · g = g3, . . .), denoted as
〈g〉, coincides with G, then the group is said to be cyclic.
We define g as the generator of (G, ·).

Definition 2.7 (Order of an element).
Let (G, ·) be a group and g be one of its elements. We define the order of g in
(G, ·), denoting it with |g| or o(g), or ord(g), the smallest positive integer
n (assuming it exists) such that gn = e.
If n exists, the element g ∈ G is said to be periodic, or with a finite order.
Conversely, if there is no positive integer n such that gn = e, the element g is
said to have order ∞ (or zero order).

• Note that o(g) = |〈g〉|, this is true because if o(g) = ∞ then also in 〈g〉
we have that gn 6= gm∀n 6= m (otherwise gn = gm ⇒ gn−m = e⇒ o(g) ≤
abs(n −m)); on the other hand, if o(g) = n, this integer is the smallest
value such taht gn = e which means that 〈g〉 = {g, g2, . . . , gn−1, gn =
g0 = e} includes also all distinct elements because if it would not be case
then there will be a pair of powers gi, gj with 0 ≤ i 6= j < n such that
gi = gj ⇒ gabs(i−j) = e ⇒ |〈g〉| ≤ abs(i − j) < n contradicting the
minimality of the value n, therefore o(g) = |〈g〉|.

• Note that taking a generic element g ∈ (G, ·), if o(g) = n then gn = e ⇔
gn−1 · g = e this implies that g−1 = gn−1, and in general g−i = gn−i, thus
every element in the set of powers 〈g〉 = {g0, g, g2, . . . , gn−1} admits an
inverse, which implies that it is a subgroup of G.

Example 2.6 (Examples of cyclic groups).

1. (Z,+) is a cyclic group. Its generators are 1 and −1, thus we can write
(〈1〉,+) = (〈−1〉,+) = (Z,+)

2. The group of even numbers under addition (E,+) is a cyclic subgroup of
(Z,+) generated by either 2 or −2

3. ({1,−1, i,−i}, ·) is a finite cyclic subgroup, generated by either i or −i
(neutral element 1)
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4. ({1,−1}, ·) is a cyclic group, generated by −1

Every cyclic group is trivially Abelian (follows directly from the properties of
powers).

Theorem 2.3 (Subgroup of a cyclic group).
Every subgroup of a cyclic group is cyclic.

Proof. Let (〈g〉, ·) be a cyclic group and let H be a subgroup of 〈G〉.
In case H contains only the neutral element e (denoted, from now on as 1),

H = 〈1〉 is trivially cyclic.
In case H 6= 〈1〉 then gn∈H for some integer n (since every element in G

has the form gn and H is a subgroup of G).
Let m be the smallest positive integer such that gm∈H and consider an

arbitrary element b∈H. Then, b = gn for some n. Dividing n by m, we obtain
that n = mq + r, where q = bn/mc and 0 ≤ r < m.
We can thus state that gr = gn · (gm)−q ∈ H, due to the closure property of the
group operation. However, m was the smallest positive integer such that gm∈H
and 0 ≤ r < m, so r=0.
Therefore n=qm and b=gn=(gm)q.
We conclude that any arbitrary element b=gn∈H is generated by gm so H=〈gm〉
is cyclic.

Example 2.7 (Integers and residue classes modulo n).
(Z,+) is cyclic group, therefore any of its subgroups is also cyclic.
We note that the non-trivial subgroups of (Z,+) are in the form of:
H = {h · n|h ∈ Z} with n > 1.
We now consider the cosets H,H + 1, . . . ,H + i . . .H + (n − 1) which are the
equivalence classes modulo n as:

a, b ∈ H + i, ⇔ (a mod n) ≡ (b mod n)⇔ ∃h ∈ Z s.t. a− b = hn

The set of the equivalence classes modulo n, [0], [1], . . . , [i] = H + i, . . . , [n − 1]
where the representative element of each class is chosen as the smallest positive
integer is usually denoted as Zn = Z/nZ = {0, 1, 2, . . . , n− 1}.
It is easy to verify that (Zn,+) is a commutative cyclic group.

Observation 2.1 (Finite Cyclic group properties).
Let (G, ·) be a finite cyclic group and g ∈ G a generic element:

• Let |G| = n. G is cyclic if and only if ∃g ∈ G such that |g| = n.

• If ∃t > 0 : gt = 1, |g| divides t. We can deduce this observation from
the fact that g has finite order |g| = m, dividing t by m we have that
t = qm + r, with 0 ≤ r < m. Thus gr = gt−qm = gt · (gm)−q = 1,
from which we derive r = 0, which in turn implies that t = qm, that is m
divides t.

• The set of all the powers of g, {g, g2, ..., gm, gm = g0 = 1}, with
m ≤ n = |G|, is a subgroup of (G, ·) generated by g, with m = |〈g〉| as
g−1 = gm−1 and thus, for a generic 0 ≤ h ≤ (m − 1), g−h = gm−h.
Consequentially, for the Lagrange’s theorem: m | n or |〈g〉| | |G|.
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• If (B, ·) is a finite group with prime order, then (B, ·) is cyclic.
(This is true because for the Lagrange Th. it admits only subgroups with
cardinality equal to 1 or equal to the order of B ... the trivial subgroups,
i.e., ({1}, ·) and itself, thus any element different from the neutral element
is a generator.

• If |g| = n then |gh| = n
gcd(n,h) .

To prove this observation, let r be the order of |gh|,
we have that (gh)r = gr h = 1⇒ n|(r h).
Consequentially, there exists an integer m such that r h = mn. In turn,
dividing both members by gcd(n, h) we get:

r
h

gcd(n, h)
= m

n

gcd(n, h)

Observe that h
gcd(n,h) and n

gcd(n,h) are coprime by construction, we can

thus conclude that:
n

gcd(n, h)
| r

By contrast, (being r=|gh|) we can observe that

(gh)
n

gcd(n,h) = (gn)
h

gcd(n,h) = 1⇒ r | n

gcd(n, h)

thus the only possible option is r = n
gcd(n,h)

• Given (G, ·)=〈g〉 and |G|=n, elements gh with h coprime with n generate
G.
The number of possible distinct generators of (G, ·) is the number of pos-
itive integers that are coprime with n and smaller than n.
Indeed, if h and n are coprime, gcd(h, n) = 1, thus |gh| = n

1 = n.

Definition 2.8 (Euler Totient function).
Given a positive integer n, we consider the set:

E = {x ∈ N : 1 ≤ x ≤ n− 1, gcd(x, n) = 1}

The size of the aforementioned set E is denoted as Euler’s Phi function of n
(alternatively, Euler’s Totient function):

ϕ(n) = | {x ∈ N : 1 ≤ x ≤ n− 1, gcd(x, n) = 1} |

and provides the number of positive integers smaller than n coprime with n itself.

Lemma 2.1.
Let n,m ∈ N \ {0} with n > m, if gcd(n,m) = 1 then ϕ(n ·m) = ϕ(n) · ϕ(m)

Proof. Left as an exercise to the reader.

Lemma 2.2. Let p be a prime and k ∈ N \ {0}

ϕ(pk) = pk − pk−1
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Proof. ϕ(pk) provides the number of positive integers smaller than pk, with no
common factors with pk. We now try to count all the integers smaller than pk,
which have a common factor with it. These integers must be multiples of p
(i.e., p, 2p, 3p, . . . p2, 2p2, . . . , pk−1). Therefore, the number of integers having a
common factor with pk is pk−1 and thus, by difference, ϕ(pk) = pk − pk−1.

Observation 2.2. We can thus rephrase the last observation on cyclic groups
saying that a finite cyclic group (G, ·) with order n has ϕ(n) generators.

Observation 2.3. Every integer number m ∈ N+ has a unique prime factors
decomposition m =

∏s
i=1 p

αi
i , where pi are distinct primes and αi are positive

integer numbers.
Knowing the prime factors decomposition it is easy to compute the Euler’s Phi
function as:

ϕ(m) = ϕ(

s∏
i=1

pαi
i ) =

s∏
i=1

ϕ(pαi
i ) =

s∏
i=1

(pαi
i − p

αi−1
i ) = m

s∏
i=1

(1− 1

pi
)

Theorem 2.4 (Inverse of the Lagrange’s Theorem for finite cyclic groups).
A cyclic group (G, ·) with |G| = n has one and only one subgroup of order m
for every possible divider of n.

Proof. Let g be the generator of G and d = n
m .

Consequently, 〈gd〉 is a subgroup of (G, ·) of order m.
Let K be another subgroup of G with order m.
As a subgroup of the cyclic group (G, ·), K = 〈gr〉 for a certain value of r.
From this, we deduce grm = 1⇒ n|rm⇔ n · l = r ·m for some integer l, which
in turn implies that r = l nm = ld and thus gr = (gd)l.
From this, we obtain K ⊆ 〈gd〉, but |K| = m, thus K = 〈gd〉.
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3 Elements of Ring Theory

Definition 3.1 (Ring). A ring is an algebraic structure with two binary oper-
ations (R,+, ·) such that the following properties hold:

• (R,+) is an abelian group, and is commonly called additive group of the
ring

• · is an internal, associative composition law on R, i.e. for all a, b, c ∈ R,
(a · b) · c = a · (b · c) ∈ R

• · is distributive with respect to +, that is ∀a, b, c ∈ R we have that a · (b+
c) = a · b+ a · c, (a+ b) · c = a · c+ b · c

If there exists a neutral element with respect to · this is commonly called unity,
notated with 1, and the ring is known as ring with unity. If · commutes, the
ring is known as commutative ring.

Example 3.1 (Ring Examples).

1. The set of square matrices, with order n and elements in R is a ring with
unity with respect to the usual matrix sum and product(the unity being the
identity matrix of order n)

2. The set Z of signed integers is a commutative ring with unity with respect
to the usual sum and product

3. The set of polynomials, with real coefficients, in the unknown x are a
commutative ring with unity with respect to the usual sum and product of
polynomials

4. Let n be an integer greater than 1, (Zn,+, ·) (where + is the sum modulo
n and · the product modulo n) is a commutative ring with unity

The following properties can be immediately verified: Given a ring (R,+, ·), let
0 and −a be the neutral element and the inverse element of a, respectively, with
respect to the + operation. We have that:

• ∀a ∈ R, a · 0 = 0 · a = 0

• ∀a, b ∈ R, a · (−b) = (−a) · b = −(ab)

Definition 3.2 (Zero divisors). Let (R,+, ·), a, b ∈ R. If a 6= 0 and b 6= 0, but
a · b = 0, then a and b are called zero divisors in R.

This definition is mutuated by the fact that in R, a divides 0 (with quotient
b).

Lemma 3.1 (Cancellation Law). A ring (R,+, ·) does not have any zero di-
viders if and only if the cancellation laws hold. This means that if a · b = a · c
and b · a = c · a, with a, b, c ∈ R and a 6= 0, then b = c.

Definition 3.3 (Integral Domain). We define integral domain a commutative
ring with unity and without any zero divisors.

Example 3.2 (Sample integral domains).
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1. (Z,+, ·) is an integral domain

2. (R[X],+, ·) is an integral domain

Definition 3.4 (Division Ring (also known as Skew Field)). We define Division
Ring a ring (R,+, ·) where (R \ {0}, ·) is a group (i.e. there are multiplicative
inverses for all non-zero elements of the support)

Theorem 3.1. Every finite integral domain is a division ring.

Definition 3.5 (Commutative Field). A commutative field is defined as a di-
vision ring (R,+, ·) where the operation · is commutative.

Theorem 3.2 (Wedderburn’s little). Every finite division ring is a commutative
field (called Galois Field).

Example 3.3.

1. Q,R,C with the common addition and multiplication operations are com-
mutative fields.

2. Let p be a prime number, (Zp,+, ·) is a finite field.

3. (F[X],+, ·) is an integral domain for every possible commutative field
(F,⊕,�).
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1 Euclid’s algorithm

On the integral domains (Z,+, ·) and (F[X],+, ·) it is possible to define the
common notion of order relation (between integer or polynomials) and the com-
mon notion of division between elements, for such a reason they are also called
Euclidean Domains.

Definition 1.1 (Greatest Common divisor). Let D be either (Z,+, ·) or (F[X],+, ·).
The Greatest Common Divisor between any two elements a, b ∈ D, gcd(a, b), is
defined as the element d ∈ D such that d|a, d|b and ∀y ∈ D, y|a ∧ y|b⇒ y|d.

Informally, we recall that, given a, b ∈ D if d ∈ D is their gcd, then d divides
also every linear combination of them, that is: d|(ξ · a+ η · b) with ξ, η ∈ D.

Considering any two elements a, b ∈ D, it is possible to prove, together
with the existence of a gcd d also the existence of at least a pair of elements
xa, xb ∈ D such that

d = xaa+ xbb

This result will allow us to compute the multiplicative inverse in a finite field.

Lemma 1.1. Given two elements a, b ∈ D, with a ≥ b > 0; if D is either
(Z,+, ·) or (F[X],+, ·) we can define the concept of quotient, that is q = ba/bc.
Once the definition of quotient is given, we define as remainder r = a mod b =
a−qb ∈ {0, 1, 2 . . . , b−1}. Assumed these premises, the following equality holds:

gcd(a, b) = gcd(b, amod b)

In case one of the operands is zero we assume that gcd(a, 0) = a, ∀ a ∈ D

Employing the previous lemma, it is possible to write down the following rela-
tions:

a > b > 0 d = gcd(a, b)
r0 = a
r1 = b d = gcd(r0, r1)
r2 = r0 mod r1 = r0 − br0/r1cr1; 0 ≤ r2 < r1 d = gcd(r1, r2)
r3 = r1 mod r2 = r1 − br1/r2cr2; 0 ≤ r3 < r2 d = gcd(r2, r3)
r4 = r2 mod r3 = r2 − br2/r3cr3; 0 ≤ r4 < r3 d = gcd(r3, r4)
· · · · · ·
rn = rn−2 mod rn−1 = rn−2 − brn−1/rn−2crn−2; rn = 0 d = gcd(rn−1, 0)

for a given integer n the following hold:

d = gcd(a, b) = rn−1

2
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Rewrite now all the steps as a linear combination of a, b only:

a > b > 0
r0 = 1 · a+ 0 · b
r1 = 0 · a+ 1 · b
r2 = r0 mod r1 = (1a+ 0b)− b r0r1 c(0a+ 1b) = (ξ2a+ η2b); 0 ≤ r2 < r1
r3 = r1 mod r2 = (0a+ 1b)− b r1r2 c(ξ2a+ η2b) = (ξ3a+ η3b); 0 ≤ r3 < r2
r4 = r2 mod r3 = (ξ2a+ η2b)− b r2r3 c(ξ2a+ η2b) = (ξ4a+ η4b); 0 ≤ r4 < r3
· · ·
rn−1 = rn−3 mod rn−2 = (ξn−3a+ ηn−3b)− b rn−3

rn−2
c(ξn−2a+ ηn−2b) =

= (ξn−1a+ ηn−1b); 0 ≤ rn−1 < rr−2
rn = rn−2 mod rn−1 = (ξn−2a+ ηn−2b)− b rn−3

rn−2
c(ξn−1a+ ηn−1b) =

= (ξna+ ηnb); rn = 0

thus,
d = rn−1 = ξn−1a+ ηn−1b; ξ, η ∈ D

Formalizing properly the previous derivations, we obtain the Euclid’s algorithm
for the computation of the greatest common divisor.

Algorithm 1.1: Extended Euclid Algorithm

Input: a, b ∈ D
Output: d = ξ · a+ η · b, ξ, η ∈ D

1 begin
2 u← (a, 1, 0) // array with three elements: u[0], u[1], u[2]
3 v ← (b, 0, 1)
4 repeat

5 w ← u−
⌊u[0]
v[0]

⌋
· v

6 u← v
7 v ← w

8 until (w[0] = 0)
9 d← u[0], ξ ← u[1], η ← u[2]

10 return (d, ξ, η)

The algorithm can be re-written to make use of only subtraction operations with
a computational complexity linear in the bit-length of the input operands and
equal to O

(
2 log(max{a, b})

)
addition/subtraction operations (Refer to Chap.

14, Menezes et al. Handbook of Applied Cryptography, CRC Press)

3
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Example 1.1. Let D =< Z,+, · >

d = gcd(11, 5) = 11ξ + 5η;

u← (11, 1, 0);
v ← (5, 0, 1);

q = b 115 c = 2, w ← (11− 2 · 5, 1− 0 · 2, 0− 1 · 2) = (1, 1,−2);
u← (5, 0, 1);
v ← (1, 1,−2);

q = b 51c = 5, w ← (5− 1 · 5, 0− 1 · 5, 1− (−2) · 5) = (0,−5, 11);
u← (1, 1,−2);
v ← (0,−5, 11);

d = 1; ξ = 1; η = −2.

in fact: 1 = 1 · 11 + (−2) · 5.

2 The Groups (Zn, +), (Z∗n, ·)
These groups are particularly useful in cryptography.

We have seen that (Zn, +) has cardinality |(Zn, +)| = n, and the inverse of any
element a is computed as its opposite −a ≡ |Zn| − a.
It can be easily shown to be a cyclic group (indeed, the element 1 – identified
with the equivalence class [1] – is a generator), while the number of generators
is ϕ(n).

Considering (Z∗n, ·), the support Z∗n must include the representatives of the
equivalence classes modulo n with a multiplicative inverse (the symbol ∗ in
(Z∗n, ·) denotes that not every positive number smaller than n has such a prop-
erty). Indeed, let us consider an integer 0 ≤ x ≤ n−1 as a possible representative
of equivalence classes in Z∗n and the following two situations:

• gcd(x, n) = 1 – the number of values x satisfying this condition are ϕ(n).

• gcd(x, n) = d > 1

In the former case, lifting the value of x in the integral domain (Z,+, ·), we can
apply the extended Euclid algorithm to find the coefficients ξ, η in the following
equality:

1 = x · ξ + n · η

Computing modn at both members, we can derive that

1 mod n = (x · ξ) mod n = ((x mod n) · (ξ mod n)) mod n

Thus, we can conclude that, the inverse of x in (Z∗n, ·) is given by:

x−1 = (ξ mod n).

4
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In the latter case, when gcd(x, n) = d > 1, we can easily prove that the consid-
ered value, x, does not belong to (Z∗n, ·).
Indeed, assuming x ∈ (Z∗n, ·) means that there should exist another element,
say it z, such that x · z = 1 mod n⇒ x · z − 1 = 0 mod n⇒ x · z − 1 = n · q for
a proper integer q.
Dividing both members of the last equality by d, we can derive that
x
d · z −

n
d · q = 1

d , which is clearly false (...the difference of two integer numbers
cannot be equal to 1

d ). Therefore, we can conclude that also the assumption
that x ∈ (Z∗n, ·) is false.

Overall, we can conclude that (Z∗n, ·) has a cardinality |(Z∗n, ·)| = ϕ(n).
It is important to establish with which values of n, the group (Z∗n, ·) is cyclic
and, in such a case, how many generators it has.

Theorem 2.1. The group (Z∗n, ·) is cyclic if and only if n=1, 2, 4, n=pk, n=2pk

where k≥1 and p≥3 is a prime integer.

It is worth noting that (Z∗p, ·) is a cyclic multiplicative group with cardinality
|(Z∗p, ·)| = ϕ(p) = p−1 thus, Z∗p = Z\{0}, and has a number of generators equal
to ϕ(|(Z∗p, ·)|) = ϕ(ϕ(p)) = ϕ(p− 1) = |{1 ≤ h < p− 1 : gcd(p− 1, h) = 1}|.

Proposition 2.1 (Numerical Finite fields). The finite group (Z∗p, ·) is cyclic
and also the finite group (Zp,+) is cyclic therefore, the structure (Zp,+, ·) is a
finite field. The field (Zp,+, ·) is also denoted as Z/(p) or Z/pZ.

2.1 Computing inverses in (Z∗
n, ·)

The inverses in (Z∗n, ·) with any n ≥ 2 can be computed in two distinct ways:

• either through the extended Euclid algorithm

• or via the properties of the groups

In particular, since (Z∗n, ·) is a finite group with order |Z∗n| = ϕ(n), each one of
its elements will have an order dividing ϕ(n) (... indeed, the set of powers of an
element x is a subgroup of Z∗n and the Lagranges’ Th. guarantees that its order
is a factor of ϕ(n)). Consequently, it is true that:

x ∈ Z∗n, xϕ(n) ≡ 1 mod n, (relation known as Euler’s theorem)

Therefore

x ∈ Z∗n, xϕ(n) ≡ 1 mod n ⇒ x−1 ≡ xϕ(n)−1 mod n

An efficient method for computing a modular exponentiation is essential. The
most naive way to compute an is to do n − 1 multiplications of the element a
with itself. In practical applications most choices of n are large enough that it
would be infeasible to compute an using n − 1 successive multiplications by a.
There are two ways to reduce the time required to do an exponentiation. One
way is to decrease the time to multiply two elements in the group; the other is

5
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to reduce the number of multiplications used to compute an. Ideally, one would
do both. We now consider the general techniques for exponentiation.

The problem can be re-formulated as follows: Given a, n ∈ N, we want to
compute the integer c = an through employing a number of multiplications
much smaller than n.
Let t be the number of binary digits necessary to encode the value n, that is:

t = dlg2 ne, n = (nt−1, . . . , n1, n0) with ni ∈ {0, 1}, i ∈ {0, 1, . . . , t− 1}

we can write that:

c = an = a
∑t−1

j=0 nj2
j

= ant−12
t−1+nt−22

t−2+...+n12
1+n0 (1)

Depending on the way we read (interpret) the last member of the above equal-
ity chain, two different exponentiation algorithms (known as Square and Multi-
ply(S&M) algorithms) can be formulated.

2.1.1 Square and Multiply - Left to Right

Assuming to scan the bits of the exponent n in the equation (1) from left to
right, the following equality holds:

c = an = ((· · · ((ant−1)2 · ant−2)2 · · · )2 · an1)2 · an0

Example 2.1. Given the following operation c = 56; we have that a = 5, t = 3,
n = 6decimal = 〈110〉2 = 1 · 22 + 1 · 21 + 0 · 20, then:

c = 5〈110〉2 = ((51)2 · 51)2 · 50 = (52 · 5)2 = 15625.

The computational cost of this method, expressed in terms of squarings and
multiplications needed to compute the final result, is (on average): t−1 squar-
ings, plus 1

2 (t− 1) multiplications, with t = dlg2 ne.

Algorithm 2.1: S&M Left to Right

Input: a, n, t = dlg2 ne, n = (nt−1, . . . , n1, n0), n ≥ 0
Output: c = an

1 begin
2 if n = 0 then
3 return 1
4 c← a
5 for i← t− 2 down-to 0 do
6 c← c2

7 if ni = 1 then
8 c← c · a
9 return c

2.1.2 Square and Multiply - Right to Left

Assuming to scan the bits of the exponent n in the equation (1) from right to
left, the following equality holds:

c = an = (a2
0

)n0 · (a2
1

)n1 · (a2
2

)n2 · · · (a2
t−1

)nt−1

6



2.1 Computing inverses in (Z∗n, ·) G. Pelosi

Example 2.2. Given the following operation c = 56; we have that a = 5, t = 3,
n = 6 = 〈110〉2 = 1 · 22 + 1 · 21 + 0 · 20, then:

c = 51102 = (52
0

)0 · (52
1

)1 · (52
2

)1 = (5 · 52 · 54) = 15625.

Note that the factor a2
j

can be computed re-using the previous factor and em-

ploying only one squaring operation:
(
a2

j−1)2
Analogously to the previous method, the computational cost of this technique,
expressed in terms of squarings and multiplications needed to compute the final
result, is (on average): t−1 squarings, plus 1

2 (t − 1) multiplications, with t =
dlg2 ne.

Algorithm 2.2: S&M Right to Left

Input: a, n, t = dlg2 ne, n = (nt−1, . . . , n1, n0), n ≥ 0
Output: c = an

1 begin
2 if n = 0 then
3 return 1
4 b← a
5 if n0 = 1 then
6 c← a
7 else
8 c← 1
9 for i← 1 to t− 1 do

10 b← b2

11 if ni = 1 then
12 c← c · b
13 return c
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A generalization of the S&M algorithms consists of processing more than
one exponent bit at time (which is equivalent to encode the exponent in a
numerical base b = 2k for some k), to trade-off the storage needed for some pre-
computation with the efficiency of the squaring and multiplication operations.
For example:

Algorithm 2.3: Window method

Input: a, n, t = dlgb ne, n = (nt−1, . . . , n1, n0), n ≥ 0, b = 2k

Output: c = an

1 begin
2 if n = 0 then
3 return 1
4 g0 ← 1

5 for i← 1 to 2k − 1 do
6 gi ← gi−1 · a
7 c← gnt−1

8 for i← t− 2 down-to 0 do

9 c← c2
k

10 if ni 6= 0 then
11 c← c · gni

12 return c
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3 Chinese remainder theorem (CRT)

Due to its usefulness in implementing efficient cryptosystems, we recall the
following very old piece of mathematics, which dates back at least 2000 years.
We shall use the CRT in a few places, for example to improve the performance
of the decryption operation of RSA and in a number of other protocols.

Theorem 3.1 (Chinese Remainder Theorem).
Let n1, . . . , nk be k positive integers pairwise coprime, and let x1, . . . , xk be k
elements of Z. The following system of modular congruences

X ≡ x1 (mod n1)
X ≡ x2 (mod n2)
X ≡ x3 (mod n3)
· · ·
X ≡ xk (mod nk)

has a unique solution X such that 0 ≤ X < N , with N =
∏k

i=1 ni.

Theorem 3.2 (Chinese Remainder Theorem - alternate definition).
Let X,n be positive integers, such that:

N =

k∏
i=1

ni = n1 · n2 · n3 · · · · nk

∀i, j ∈ {1, . . . , k}, i 6= j gcd(ni, nj) = 1

The relation

X 7→ (x1, x2, . . . , xn)

with X ≡ xi modni (0 ≤ xi < ni)

is bijective.

Proof. (Sketch)

• Given X and a k-uple of integers, (n1, n2, . . . , nk) pairwise coprime, prov-
ing that there is only one k-uple {x1, x2, . . . , xk}, with 0 ≤ xi < ni,
fitting the relation is trivial: it is sufficient to consider the k-uple (X mod
n1, X mod n2, . . . , X mod nk) for the relation to hold.

• We now prove that given a k-uple (x1, x2, . . . , xk), 0 ≤ xi < ni, such that
∀i 6= j gcd(ni, nj) = 1, it is possible to associate only one positive integer

X mod N with N =
∏k

i=1 ni.

In order to do so, let Mi and M ′i be: Mi = N
ni

and M ′i = M−1i mod ni,
respectively. Note that it is always possible to compute M ′i since all the
ni values are coprime by construction with Mi.
We note that:

Mi ·M ′i ≡ 1 mod ni ∀i ∈ {1, 2, . . . , k}
Mi ·M ′i ≡ 0 mod nj ∀i ∈ {1, 2, . . . , k}, j 6= i

The first observation is rather trivial as Mi e M ′i are one the inverse of
the other by construction.
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The second observation employs the fact that, by construction, Mi is a
multiple of all the values nj except for ni.

It is thus easy to verify that the positive integer number X, 0 ≤ X < N
defined as:

X ,

(
k∑

i=1

Mi ·M ′i · xi

)
mod N (2)

is the smallest positive integer bound to the tuple (x1, x2, . . . , xk), where
∀iX ≡ni

xi. In fact, all the elements of the sum are equal to zero mod ni
except for the i-th one.
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